aboutsummaryrefslogtreecommitdiffstats
path: root/geom.hpp
blob: 7ed56b7cdb094a774e5f4a586d74f14e46105a24 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

#pragma once

#include <math.h>

#define EPSILON 1e-6
#define abs(x) ((x)<0?-(x):(x))

struct vec {
    double x, y;

    vec(double xx, double yy) : x(xx), y(yy) {}

    double norm() const {
        return sqrt(x*x + y*y);
    }
    double sqnorm() const {
        return x*x + y*y;
    }

    double angle() const {
        double xx = x / norm();
        double a = acos(x);
        return (y > 0 ? a : -a);
    }

    vec normalize() const {
        double n = norm();
        return vec(x / n, y / n);
    }

    bool is_nil() const {
        return sqnorm() < EPSILON;
    }

    static vec from_polar(double r, double theta) {
        return vec(r * cos(theta), r * sin(theta));
    }

    static double dot(vec a, vec b) {       // dot product (produit scalaire)
        return a.x * b.x + a.y * b.y;
    }
    static double cross(vec a, vec b) { // cross product (d├ęterminant 2x2)
        return a.x * b.y - a.y * b.x;
    }
    static double angle(vec a, vec b) { // oriented angle between two vectors
        if (a.is_nil() || b.is_nil()) return 0;
        float cos = dot(a.normalize(), b.normalize());
        if (cos <= -1) return M_PI;
        float uangle = acos(cos);
        if (cross(a, b) > 0) {
            return uangle;
        } else {
            return -uangle;
        }
    }
};

inline vec operator+(const vec& a, const vec& b) { return vec(a.x+b.x, a.y+b.y); }
inline vec operator-(const vec& a, const vec& b) { return vec(a.x-b.x, a.y-b.y); }
inline vec operator-(const vec& a) { return vec(-a.x, -a.y); }
inline vec operator*(double a, const vec& v) { return vec(a*v.x, a*v.y); }
inline vec operator*(const vec& v, double a) { return vec(a*v.x, a*v.y); }
inline vec operator/(const vec& v, double a) { return vec(v.x/a, v.y/a); }

struct line {
    // Line defined by ax + by + c = 0
    double a, b, c;

    line(double aa, double bb, double cc) : a(aa), b(bb), c(cc) {}
    line(vec p1, vec p2) {
        a = p1.x-p2.x ;
        b = p1.y-p2.y ;
        c = p1.x*(p2.x-p1.x)+p1.y*(p2.y-p1.y);
    }

    bool on_line(vec p) const {
        return a * p.x + b * p.y + c < EPSILON;
    }

    double dist(vec p) const {
        // calculate distance from p to the line
        return abs(a*p.x + b*p.y + c) / sqrt(a*a + b*b);
    }

    vec proj(vec p) const {
        // calculate orthogonal projection of point p on the line
        // TODO
        return vec(0, 0);
    }

    double angle() const {
        return vec(-b, a).angle();
    }

};

struct segment {
    vec a, b;

    segment(vec pa, vec pb) : a(pa), b(pb) {}

    bool on_segment(vec p) const {
        // TODO
        // does point intersect segment?
        return false;
    }

    double dist(vec p) const {
        //TODO
        return 1;
    }
};

struct circle {
    vec c;
    double r;

    circle(double x, double y, double rr) : c(x, y), r(rr) {}
    circle(vec cc, double rr) : c(cc), r(rr) {}

    bool on_circle(vec p) const {
        return ((p - c).norm() - r < EPSILON);
    }

    double dist(vec p) const {
        // TODO
        return 1;
    }
};

struct circpoint {
    circle c;
    double theta;

    circpoint(circle cc, double th) : c(cc), theta(th) {}
    circpoint(vec cc, double rr, double th) : c(cc, rr), theta(th) {}

    vec pos() const {
        return c.c + vec(c.r * cos(theta), c.r * sin(theta));
    }
};

struct circarc {
    circle c;
    double theta1, theta2;

    circarc(circle cc, double tha, double thb) : c(cc), theta1(tha), theta2(thb) {}

    double dist(vec p) const {
        // TODO
        return 1;
    }
};

/* vim: set ts=4 sw=4 tw=0 noet :*/