aboutsummaryrefslogtreecommitdiffstats
path: root/geom.hpp
blob: cb8d5831c54c9e30903769b9a9b3afaaf11dd3e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

#pragma once

#include <math.h>
#include <algorithm>
#include <assert.h>

#define EPSILON 1e-6
#define abs(x) ((x)<0?-(x):(x))

struct vec {
    double x, y;

    vec(double xx, double yy) : x(xx), y(yy) {}

    double norm() const {
        return sqrt(x*x + y*y);
    }

    double sqnorm() const {
        return x*x + y*y;
    }

    bool is_nil() const {
        return sqnorm() < EPSILON;
    }

    double angle() const {
        if (is_nil()) return 0;
        double xx = x / norm();
        double a = acos(x);
        return (y >= 0 ? a : -a + 2*M_PI);
    }

    vec normalize() const {
        double n = norm();
        return vec(x / n, y / n);
    }

    static vec from_polar(double r, double theta) {
        return vec(r * cos(theta), r * sin(theta));
    }

    static double dot(vec a, vec b) {       // dot product (produit scalaire)
        return a.x * b.x + a.y * b.y;
    }
    static double cross(vec a, vec b) {     // cross product (déterminant 2x2)
        return a.x * b.y - a.y * b.x;
    }
    static double angle(vec a, vec b) {     // oriented angle between two vectors
        if (a.is_nil() || b.is_nil()) return 0;
        float cos = dot(a.normalize(), b.normalize());
        if (cos <= -1) return M_PI;
        float uangle = acos(cos);
        if (cross(a, b) >= 0) {
            return uangle;
        } else {
            return -uangle + 2*M_PI;
        }
    }
};

inline vec operator+(const vec& a, const vec& b) { return vec(a.x+b.x, a.y+b.y); }
inline vec operator-(const vec& a, const vec& b) { return vec(a.x-b.x, a.y-b.y); }
inline vec operator-(const vec& a) { return vec(-a.x, -a.y); }
inline vec operator*(double a, const vec& v) { return vec(a*v.x, a*v.y); }
inline vec operator*(const vec& v, double a) { return vec(a*v.x, a*v.y); }
inline vec operator/(const vec& v, double a) { return vec(v.x/a, v.y/a); }
inline bool operator==(const vec& v, const vec& w) { return (v-w).is_nil(); }

struct line {
    // Line defined by ax + by + c = 0
    double a, b, c;

    line(double aa, double bb, double cc) : a(aa), b(bb), c(cc) {}
    line(vec p1, vec p2) {
        a = p1.x-p2.x ;
        b = p1.y-p2.y ;
        c = p1.x*(p2.x-p1.x)+p1.y*(p2.y-p1.y);
    }

    bool on_line(vec p) const {
        return a * p.x + b * p.y + c < EPSILON;
    }

    double dist(vec p) const {
        // calculate distance from p to the line
        return abs(a*p.x + b*p.y + c) / sqrt(a*a + b*b);
    }
    vec dir() const {
        // calculate a directional vector oh the line
        return vec(-b,a);
    }

    vec proj(vec p) const {
        // calculate orthogonal projection of point p on the line
        return p-(a*p.x+b*p.y+c)/(a*a+b*b)*vec(a,b);
    }

    double angle() const {
        return vec(-b, a).angle();
    }

};

struct segment {
    vec a, b;

    segment(vec pa, vec pb) : a(pa), b(pb) {}

    bool on_segment(vec p) const {
        // TODO

        // does point intersect segment?
        return false;
    }

    double dist(vec p) const {
        double scal = vec::dot(b-a, p-a);
        double sqn = (b-a).sqnorm();
        if (scal > sqn) return (p-b).norm();
        if (scal < 0) return (p-a).norm();
        return line(a,b).dist(p);
    }
};

struct circle {
    vec c;
    double r;

    circle(double x, double y, double rr) : c(x, y), r(rr) {}
    circle(vec cc, double rr) : c(cc), r(rr) {}

    bool on_circle(vec p) const {
        return ((p - c).norm() - r < EPSILON);
    }

    double dist(vec p) const {
        // distance à un cercle
        double d = (c-p).norm() ;
        if (d > r) return (d - r);
        return 0;
    }

    vec at_angle(double theta) const {
        return c + vec(r * cos(theta), r * sin(theta));
    }
};

struct circarc {
    // represents the arc from theta1 to theta2 moving in the direct way on the circle
    // canonical representation : theta2 > theta1
    circle c;
    double theta1, theta2;

    circarc(circle cc, double tha, double thb) : c(cc), theta1(tha), theta2(thb) {
        while (theta1 < 0) theta1 += 2*M_PI;
        while (theta1 > 2*M_PI) theta1 -= 2*M_PI;
        while (theta2 < theta1) theta2 += 2*M_PI;
        while (theta2 > theta1 + 2*M_PI) theta2 -= 2*M_PI;
    }

    bool is_in_pie(vec p) const{
        double theta = (p - c.c).angle();
        if (theta > theta1 && theta2 > theta) return true ;
        if (theta + 2*M_PI > theta1 && theta2 > theta + 2*M_PI) return true ;
        return false ;
    }
    double dist(vec p) const {
        if (is_in_pie(p)) return abs((p-c.c).norm()-c.r);
        return std::min((p - c.at_angle(theta1)).norm(), (p - c.at_angle(theta2)).norm());
    }
};

struct angular_sector {
    // attention, les circarc doivent avoir le même centre
    circarc inner, outer;

    angular_sector(circarc i, circarc o) : inner(i), outer(o) {
        assert(i.c.c == o.c.c);
    }
    bool is_in_sector(vec p) const{
    //TODO
    return false;
    }

    double dist(vec p) const{
    if (is_in_sector(p)) return 0;
    //TODO
    return 29 ;
    }
};
/* vim: set ts=4 sw=4 tw=0 noet :*/