Compléments d'algèbre linéaire - fiche récapitulatif

Lycée MASSÉNA, MP* 931 2012-2013

On se place dans un \mathbb{K} -espace vectoriel E.

Déf. Famille libre en dimension infinie.

Soit I un ensemble d'indices quelconques, soit $\mathcal{F} = (e_i)_{i \in I}$ une famille de vecteurs de E.

 \mathcal{F} est libre $\stackrel{\text{def}}{\Leftrightarrow}$ toute sous-famille finie de \mathcal{F} est libre

1 Sommes, sommes directes

Def. Somme de p sous-espaces vectoriels.

$$E_1 + E_2 + \dots + E_P = \{x_1 + x_2 + \dots + x_p, x_i \in E_i\}$$

Cet espace est un sev de E et c'est le plus petit qui contienne E_1, E_2, \dots et E_p .

Déf. Somme directe de p sev.

Les espaces $E_1, ..., E_p$ sont en somme directe ssi

 $\forall x \in E_1 + \dots + E_p, \ \exists! (x_1, \dots, x_p) \in E_1 \times \dots \times E_p \ \text{tels que } x = x_1 + \dots + x_p.$

Théorème. Il est équivalent de dire :

i. $E_1, ..., E_p$ sont en somme directe

ii. $0 = x_1 + \dots + x_p$ avec $\forall i, x_i \in E_i \iff \forall i, x_i = 0$

iii. Si $\mathcal{B}_1, ..., \mathcal{B}_p$ sont des bases de $E_1, ..., E_p$ respectivement, alors leur concaténation est libre

iv. En dimension finine, $\dim (E_1 + \dots + E_P) = \dim E_1 + \dots + \dim E_p$

Dans ce cas, on note $E_1 \oplus \cdots \oplus E_p$ leur somme.

Remarque : $(E_1 \oplus E_2) \oplus E_3 = E_1 \oplus (E_2 \oplus E_3) = E_1 \oplus E_2 \oplus E_3$

Remarque : on peut créer la famille des projecteurs (p_i) associée à cette décomposition :

 p_i projecteur sur E_i et de noyau $\bigoplus_{j\neq i} E_j$, on a alors $\mathrm{Id} = p_1 + \cdots + p_q$ et $\forall i, j \neq i, p_i \circ p_j = \tilde{0}$.

Prop. F et G sont en somme directe $\Leftrightarrow F \cap G = \{0\}$ (ne fonctionne que pour deux sev!)

2 Théorème du rang

Théorème. Soit $f: E \to F$ une application linéaire,

alors la restriction de f à tout supplémentaire G de Ker f est un isomorphisme de G sur Im f.

Conséquence. Soit $f: E \to F$ une application linéaire, où E est de dimension finie.

Alors rg f est fini et dim (Ker f) + rg f = dim E.

Déf. Codimention. On dit que F est de codimension finie dans E si F possède un supplémentaire dans E de dimension finie.

Prop. Dans ce cas, tous les supplémentaires de F dans E ont la même dimension.

On appelle alors codimension de F (notée $\operatorname{codim} F$) la dimension de ces supplémentaires.

Déf. Un hyperplan de E est un sev de codimension 1.

3 Matrices

Ici dim E=n

Déf. Diviseur de 0.

On dit que $A \in \mathcal{M}_n(\mathbb{K})$ divise 0 (à droite) si $A \neq 0$ et $\exists B \in \mathcal{M}_n(\mathbb{K})$ tq AB = 0.

De telles matrices existent car $\mathcal{M}_n(\mathbb{K})$ n'est pas intègre.

Prop. A divise 0 (à gauche ou a droite) \Leftrightarrow A n'est pas inversible

Prop. Produit par bloc. On a le droit de faire le produit par blocs de décompositions en blocs de M et N dès que les tailles des blocs des deux décompositions sont compatibles.

Déf. Deux matrices M et N sont équivalentes si $\exists P, Q \in GL_n(\mathbb{K})$ telles que $N = Q^{-1}NP$

Prop. Deux matrices sont équivalentes ssi elles ont le même rang

Déf. Deux matrices M et N sont semblables si $\exists P \in GL_n(\mathbb{K})$ telles que $N = P^{-1}NP$

Prop. Deux matrices semblables sont les matrices d'un même endomorphisme dans deux bases.

4 Déterminants

Ici dim E = n

Prop. Toutes les formes n-linéaires alternées de E sont proportionnelles.

Déf. Soit $\mathcal{B} = (e_1, ..., e_n)$ une base de E.

 $\det_{\mathcal{B}}$ est l'unique forme *n*-linéaire alternée telle que $\det_{\mathcal{B}}(e_1,...,e_n)=1$

Déf. Déterminant d'une matrice carrée.

 $\det M = \det_{\mathcal{B}}(C_1, ..., C_n)$, où \mathcal{B} est la base canonique de \mathbb{K}^n .

Déf. Cofacteur et comatrice. Soit $M = (m_{i,j})_{i,j}$ une matrice carée

On note $c_{i,j} = (-1)^{i+j} M_{i,j}$, où $M_{i,j}$ est le mineur d'indices i et j.

 $c_{i,j}$ est le cofacteur d'indices i et j, et com $M = (c_{i,j})_{i,j}$ est la comatrice de M.

Prop. $\forall M \in \mathcal{M}_n(\mathbb{K})$, on a ${}^t \text{com } M \times M = M \times {}^t \text{com } M = \det M \times I_n$

5 Dualité

Déf. Dual algébrique.

L'ensemble $\mathcal{L}(E, \mathbb{K})$ des formes linéaires sur E s'appelle le dual algébrique de E et est noté E^* .

 $\mathbf{D\acute{e}f.}$ Soit H un sev de E, on dit que H est un hyperplan si c'est le noyau d'une forme linéaire sur E non nulle.

Prop. H est un hyperplan \Leftrightarrow codim H=1 \Leftrightarrow pour toute droite $D \not\subset H$, $D \oplus H = E$

Prop. Si H est un hyperplan et F un sev tel que $H \subset F$, alors F = H ou F = E.

Prop. Si $H = \ker f_1 = \ker f_2$ où $f_1, f_2 \in E^*$, alors $\exists \lambda \in \mathbb{K}$ tel que $f_2 = \lambda f_1$

Déf. Formes linéaires coordonnées.

Si dim E=n, soit $\mathcal{B}=(e_1,...,e_n)$ une base de E. $\forall x\in E, x=\sum_{i=1}^n\,\lambda_i(x)\,e_i$.

On note alors $e_i^*: x \mapsto \lambda_i(x)$, appellée *i*-ème forme linéaire coordonnée dans la base B.

En dimension finie. dim $E^* = \dim E$

Déf. $\forall \mathcal{B} = (e_1, ..., e_n)$ base de E, $(e_1^*, ..., e_n^*)$ est une base de E^* appellée base duale de \mathcal{B} .

Théorème. Soit $(f_1, ..., f_n)$ une famille de E^* , alors :

 $(f_1, ..., f_n)$ base de $E^* \Leftrightarrow \bigcap_{i=1}^n \ker f_i = \{0\}$

Dans ce cas il existe une unique base de E telle que $(f_1, ..., f_n)$ soit sa base duale, on l'appelle la base antéduale (ou préduale) de $(f_1, ..., f_n)$.

Prop. Tout sev F de E de dimension dim F=p s'écrit comme l'intersection des noyaux de n-p formes linéaires indépendantes.

Prop. Si $(f_1, ..., f_{n-p})$ sont n-p formes linéaires indépendantes, alors $\bigcap_{i=1}^{n-p}$ Ker f_i est de dimension p.