
Clustering is Efficient for Approximate
Maximum Inner Product Search

Alex Auvolat ∗ †
alex.auvolat@ens.fr

Pascal Vincent ∗ ‡
vincentp@iro.umontreal.ca

Abstract

Locality Sensitive Hashing (LSH) techniques have recently become a popular so-
lution for solving the approximate Maximum Inner Product Search (MIPS) prob-
lem, which arises in many situations and have in particular been used as a speed-up
for the training of large neural probabilistic language models.
In this paper we propose a new approach for solving approximate MIPS based on a
variant of the k-means algorithm. We suggest using spherical k-means which is an
algorithm that can efficiently be used to solve the approximate Maximum Cosine
Similarity Search (MCSS), and basing ourselves on previous work by Shrivastava
and Li we show how it can be adapted for approximate MIPS.
Our new method compares favorably with LSH-based methods on a simple recall
rate test, by providing a more accurate set of candidates for the maximum inner
product. The proposed method is thus likely to benefit the wide range of problems
with very large search spaces where a robust approximate MIPS heuristic could
be of interest, such as for providing a high quality short list of candidate words to
speed up the training of neural probabilistic language models.

1 Introduction

The Maximum Inner Product Search (MIPS) problem has recently received increased attention, as
it appears naturally in classification tasks with a very large number of classes, that are now more
commonly tackled. This is a common situation in NLP tasks where the large number of classes is
the vocabulary size. This often poses computational challenges. For example in neural probabilistic
language models [1] the probabilities of a next word given the context of the few previous words is
computed in the last layer of the network as a multiplication of the last hidden layer representation
with a very large matrix (an embedding dictionary) that has as many columns as there are words in
the vocabulary. Each such column corresponds to the embedding of a vocabulary word in the hidden
layer space. Thus an inner product is taken between each of these and the hidden representation,
to yield an inner product “score” for each vocabulary word. Passed through a softmax nonlinearity,
these yield the predicted probabilities for all possible words. The ranking of these probability values
is unaffected by the softmax layer, so finding the k most probable words is exactly equivalent to
finding the ones with the largest inner product scores, i.e. solving a k-MIPS problem.

Formally, given a set X = {x1, . . . , xn} of points and a query vector q, the k-MIPS problem is
described by:

argmax
(k)
i∈1,...,nq

>xi

∗DIRO, Université de Montréal, 2920 chemin de la Tour, Montréal, Québec, H3T 1J8, Canada
†Département d’Informatique, École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France
‡CIFAR

1

ar
X

iv
:1

50
7.

05
91

0v
1

 [
cs

.L
G

]
 2

1
Ju

l 2
01

5

where the argmax(k) notation corresponds to the set of the indices providing the k maximum values.
Such a problem can be solved exactly in linear time by calculating all the q>xi and selecting the k
maximum items, but such a method is too costly to be used on large applications where we typically
have hundreds of thousands of entries in our vocabulary and embedding dictionary.

All the methods discussed in this article are based on the notion of a candidate set, i.e. a small
subset of the dataset on which we do an exact k-MIPS, making the computation much faster. There
is no guarantee that the candidate set contains the target elements, therefore these methods solve
approximate k-MIPS. Better algorithms provide us with candidate sets that are both smaller and
have larger intersections with the actual k maximum inner product vectors.

Popular approaches for approximate k-MIPS are based on Locality Sensitive Hashing (LSH) [2, 3].
We suggest a different approach that is not based on LSH but on an adaptation of the spherical
k-means clustering algorithm [4]. One fundamental difference between our approach and hashing
techniques is that our approach is data-dependent, meaning that the clustering adapts itself to the
geometry of the data.

In section 2 we discuss related work such as hierarchical softmax, the use of Locality Sensitive
Hashing (LSH) for approximate k-MIPS, as well as previous work by Shrivastava and Li [2] on
which our approach is based. In section 3 we show how k-means clustering can be adapted to
solve the approximate k-MCSS problem directly and the approximate k-MIPS problem by using
the transformation of [2]. We then introduce in section 4 a hierarchical k-means variant that can be
used to accelerate the searches over large databases, as well as make them more precise. In section 5
we provide experimental evidence showing that our method is better than WTA or SRP hashes for
1-MIPS, 10-MIPS and 100-MIPS, and that it degrades more gracefully when the query point is far
away from any of the datapoints. In section 6 we briefly discuss possible applications of our method
to speeding up the training of NLP models with large vocabularies.

2 Related work

2.1 Hierarchical softmax and clustering approaches for large vocabularies

A first approach to solving the large softmax problem is the hierarchical softmax approach intro-
duced in [5] and evaluated in [6]. This approach is based on a non data-dependant clustering of the
words into a binary [5], or more generally n-ary tree that serves as a fixed structure for the learning
process of the model. Each node of the tree has a weight vector and a bias which are adjusted as a
part of the learning. The complexity of the learning is reduced from O(n) to O(log n).

Common clustering approaches used for defining the fixed initial structure of hierarchical softmax
include frequency-based clustering as well Brown clustering and are described in [7]. These cluster-
ing techniques produce fixed tree data structures that are not always compatible with the geometry
of the word embeddings that we want to learn. A better approach has been suggested in [8] where
the clustering is obtained by first training a model with very low-dimension embeddings and doing
top-down clustering on those embeddings, yielding a data structure better adapted to the learning
of full-fledged embeddings. The quality of the model is also vastly improved by allowing words to
appear in several locations of the tree.

On the face of its hierarchical tree structure, hierarchical softmax appears very similar to the MIPS
techniques we will explore in this paper. So we draw the attention of the reader to the fact that their
rationale and workings are fundamentally different. Hierarchical softmax defines the probability of
a leaf node as the product of all the probabilities given by all the intermediate softmaxes on the
way to that leaf node (i.e. probability of belonging to a specific high-level group, and to a specific
subgroup within that group, etc. . .). This results in a nicely normalized, exact and cheap to compute
probability for the leaf node. But as a hierarchical softmax imposes this hierarchical group structure
in the definition of the probabilistic model, it differs substantially from a regular large flat softmax
probability model: it is much more inflexible. We hypothesize that this may be the reason why using
hierarchical softmax has often been reported to lead to decreased model quality in practice, and why
so many practitioners instead choose to pay the hefty computational price of a large flat softmax. By
contrast the outlook of the approximate MIPS search is to impose no such arbitrary structure on the
probabilistic model. Instead a single flexible flat softmax may be kept to train and use. In the MIPS

2

outlook, the hierarchical structure will be employed only as a heuristic to lighten the computational
burden, not to change or constrain the actual probabilistic model.

2.2 Sampling based approaches to the large vocabulary problem

The outlook of approximate MIPS is akin to techniques that each time heuristically sample a smaller
candidate subset of the output nodes to evaluate, as e.g. in the biased importance sampling approach
of [9, 10], or when employing Noise Contrastive Estimation [11] as proposed in [12]. But while
these techniques sample blindly, MIPS approaches have the potential to bias the sampling, and the
learner’s attention, in a smarter way: towards nodes that are more fit contenders, likely to score high.

2.3 Locality sensitive hashing for approximate k-MIPS

Several Locality Sensitive Hashing (LSH) based techniques have recently been gaining in popular-
ity [2, 3, 13, 14] as a solution for the large vocabulary learning problem. These techniques are based
on a hashing of the embedding vectors into bins that group together vectors which share a common
geometrical property. The candidate set is simply the bin in which the query point is located. The
two approaches we have chosen to consider for our comparison are Sign Random Projection (SRP)
hashes [2] and Winner Take All (WTA) hashes [3].

The definition of the bins, i.e. the geometry of the clustering, is not data-dependant in the hashing
approach, since the projections (in the case of SRP) or the permutations (in the case of WTA) are
decided in advanced as a fixed parameter of the data structure. We believe this to be an important
limitation of LSH techniques which the k-means method that we introduce does not have.

2.4 MIPS to MCSS transformation

In previous work by Shrivastava and Li [2], a method is introduced for reducing the MIPS problem
to the Maximum Cosine Similarity Search (MCSS) problem by ingeniously rescaling the vectors and
adding new components, making the norms of all the vectors approximately the same. As our new
approach is based on this transformation, we will present its basic definition and properties in this
section, and refer to [2] for the details.

Let X = {x1, . . . , xn} be our dataset. Let U < 1 and m ∈ N∗ be parameters of the algorithm (all
our experiments were made with m = 3 and U = 0.85). The first step is to scale all the vectors in
our dataset by the same factor such that maxi ||xi||2 = U .

We then apply two mappings P and Q, one on the datapoints and another on the query vector.
These two mappings simply concatenate m new components to the vectors making the norms of the
datapoints all be roughly the same. The mappings are defined as follows:

P (x) = [x, 1/2− ||x||22, 1/2− ||x||42, . . . , 1/2− ||x||2
m

2]
Q(x) = [x, 0, 0, . . . , 0]

As shown in [2], mapping P brings all the vectors to roughly the same norm: we have ||P (xi)||22 =

m/4 + ||xi||2
m+1

2 , with the last term vanishing at the tower rate when m → +∞, since ||xi||2 ≤
U < 1. We thus have the following approximation of MIPS by MCSS for any query vector q,

argmax
(k)
i q>xi ' argmax

(k)
i

Q(q)>P (xi)
||Q(q)||2·||P (xi)||2

3 Adapting k-means clustering for maximum inner product search

3.1 Standard k-means for approximate L2 nearest neighbour search

The standard k-means algorithm [15, 16] (Algorithm 1) is a widely used method for clustering dat-
apoints into locality-based clusters. k-means uses a fixed number K of clusters defined by their
centroids. The algorithm is a fixpoint algorithm that iterates two steps until convergence: a) assign
each datapoint to the cluster whose centroid is the nearest; b) recalculate the centroid of each cluster

3

to be the mean of the points associated to that cluster. The algorithm converges when these two steps
don’t change the assignment of the points or the centroids of the clusters.

k-means clustering can be used to do an accelerated approximate nearest neighbour search: given
a query point, we consider as candidate set the set of the points that are in the same cluster as the
query point. We then do an exact nearest neighbour search on the points of the candidate set only.
We can also consider as candidate set the set of points belonging to the p clusters whose centroids
are the nearest to the query point, instead of taking only the points of the one best cluster, making
our algorithm better suited for the cases where the query point is at the boundary between several
clusters.

3.2 A variant of k-means clustering for approximate k-MCSS

If the datapoints x1, . . . , xn have all been scaled to a norm of 1, then the spherical k-means algo-
rithm discussed in [4] can be efficiently used to do approximate Maximum Cosine Similarity Search
(MCSS). Algorithm 2 is a formal specification of the spherical k-means algorithm, where we denote
by ci the centroid of cluster i (i ∈ {1, . . . ,K}) and aj the index of the cluster assigned to each point
xj .

Algorithm 1 Standard k-means

aj ← rand(K)
while ci or aj changed at previous step do

ci ← 1
#{j|aj=i}

∑
j|aj=i xj

aj ← argmini∈{1,...,k}||xj − ci||
end while

Algorithm 2 Spherical k-means

aj ← rand(K)
while ci or aj changed at previous step do

ci ←
∑

j|aj=i xj

||
∑

j|aj=i xj ||

aj ← argmaxi∈{1,...,k}x
>
j ci

end while

The difference between standard k-means clustering and spherical k-means is that in the spherical
variant, the datapoints are clustered not according to their position in the Euclidian space, but ac-
cording to their direction, which can be visualized as a point on the unit sphere. The initialization
of the algorithm is random: each datapoint is associated to a random cluster, and the first step of the
algorithm is to recalculate the centroids of the clusters. We have not experimented with more subtle
initialization schemes as random initialization has shown sufficient convergence properties.

To find the one vector that has the maximum cosine similarity to query point q in a dataset clustered
by this method, we first find the cluster whose centroid has the best cosine similarity with the query
vector – i.e. the i such that q>ci is maximal – and consider all the points belonging to that cluster as
the candidate set. We then simply take argmaxj|aj=i q

>xj as an approximation for our maximum
cosine similarity vector. This method can be extended for finding the k maximum cosine similarity
vectors: we compute the cosine similarity between the query and all the vectors of the candidate set
and take the k best matches. This can be also done with more than one cluster: to make our search
more accurate, at the cost of a slightly longer computation, we can consider the points from the p
best matching clusters as our candidate set.

3.3 Adapting spherical k-means for approximate k-MIPS

The spherical k-means algorithm solves approximate MCSS which is a different problem than
approximate MIPS. However the transformation explained in section 2.4 allows to reduce the
MIPS problem to a MCSS problem, with a reasonable approximation. Therefore in order to
solve approximate k-MIPS, we can run our spherical k-means clustering algorithm on the vectors
{P (x1), . . . , P (xn)}, and have our candidate set for exact k-MIPS be the set of points that fall in
the cluster i that maximizes Q(q)>ci.

4 Hierarchical k-means for faster and better recall

If we have n points, we will typically cluster our dataset into
√
n clusters so that each cluster contains

approximately
√
n points, reducing the complexity of the search from O(n) to O (

√
n). If we use

4

the single closest cluster as a candidate set, then the candidate set size is of the order of
√
n. But

when doing approximate k-MIPS with k very big (for example 100), we will typically want to
consider the two or three closest clusters as a candidate set, in order to limit the problems that arise
when the query point is close to the boundary between several clusters. This simple approach may
not be optimal on datasets with many points, as the candidate set can quickly grow uselessly big,
containing many unwanted items. To restrict the candidate set to a smaller count of better targeted
items, we would need to have smaller clusters, but then the search for the best matching clusters
becomes the most expensive part. To solve this problem we propose an approach where we cluster
our dataset into many small clusters, and then cluster the small clusters into bigger clusters, and so
on any number of times. Our approach is thus a bottom-up clustering approach.

In the experiment we have done, we cluster our datasets in n2/3 first-level, small clusters, and
then cluster the centroids of the first-level clusters into n1/3 second-level clusters, making our data
structure a two-layer hierarchical clustering. This approach can be generalized to as many levels of
clustering as necessary.

... ...

...

...

...

Figure 1: Walk down a hierarchical clustering tree: at each level we have
a candidate set for the next level. In the first level, the dashed red boxed
represent the p best matches, which gives us a candidate set for the second
level, etc.

To search for the small clusters that best match the query point and will constitute an optimal can-
didate set, we go down the hierarchy keeping at each level only the p best matching clusters. This
process is illustrated in Figure 1. Since at all levels the clusters are of much smaller size, we can
take much larger values for p, for example p = 8 or p = 16.

Formally, if we have L levels of clustering, let Il be a set of indices for the clusters at level l ∈
{0, . . . , L}. Let c(l)i , i ∈ Il be the centroids of the clusters at level l, with {c(L)

i } conveniently
defined as being the datapoints themselves, and let a(l)i ∈ Il−1, i ∈ Il be the assignment of the
centroids c(l)i to the clusters of layer l− 1. The candidate set is found using the method described in
Algorithm 3. Our candidate set is the set CL obtained at the end of the algorithm.

Algorithm 3 Search in hierarchical spherical k-means

C0 = I0
for l = 0, . . . , L− 1 do
Al = argmax

(p)
i∈Cl

q>c
(l)
i

Cl+1 =
{
i|a(l+1)

i ∈ Al

}
end for
return CL

In our approach, we do a bottom-up clustering, i.e. we first cluster the dataset into small clusters, then
we cluster the small cluster into bigger clusters, and so on until we get to the top level which is only
one cluster. Other approaches have been suggested such as in [8], where the method employed is a
top-down clustering strategy where at each level the points assigned to the current cluster are divided
in smaller clusters. The approach of [8] also addresses the problem that using a single lowest-level
cluster as a candidate set is an inaccurate solution by having the datapoints be in multiple clusters.

5

We use an alternative solution that consists in exploring several branches of the clustering hierarchy
in parallel.

5 Experimental results

5.1 Experimental setting

To evaluate our approach, we have chosen to work on the word2vec word embeddings provided
by Google researchers [12], as well as the 100 000 word embeddings provided by Collobert and
Weston [17]. For the word2vec setting, we have restricted ourselves to the first 100 000 words of the
training set, so that the two datasets were the same size n = 100 000. The embeddings provided by
Collobert and Weston are of dimension 50, whereas the word2vec embeddings are of dimension 300.
We discuss results on word2vec, but the results are similar on Collobert and Weston’s embeddings
and are available in Appendix B.

The algorithms we have compared are: clustering in
√
n clusters and taking the 1, 2, 3 best matching

clusters; clustering in two layers of n1/3 clusters and taking at each level the 2, 4, 8, 16 best matching
clusters; WTA hashing; and SRP hashing.

We have tried to adapt the parameters n, p and k of the hashing algorithms so that the candidate set
would be of a size comparable to that obtained with the clustering algorithms, which is tricky since
with the hashing algorithm we observed that the candidate set size diminishes a lot when we add
more noise to the query, but is much more stable with the clustering approaches. We have finally
selected (k, p, n) = (16, 4, 100) for WTA hashing and (p, n) = (16, 100) for SRP hashing.

The query vectors we have chosen for testing our algorithms are vectors from the dataset to which
we add Gaussian noise of varying magnitude. We have tested all the algorithms for 1-MIPS, 10-
MIPS and 100-MIPS. We record the recall frequency, that is the proportion of target vectors (i.e.
exact k-MIPS) that are in the candidate set returned by the algorithm, as well as the size of that
candidate set.

5.2 Results on recall rate

Table 1 shows recall rates when the query vector is exactly one of the words present in the dataset,
and Table 2 shows recall rates when the query vector is a random normal Gaussian vector. We
have tried to group the various parameters for the algorithms into groups based on the size of the
candidate set (last column of the table), so as to show that for similar candidate set sizes, the clus-
tering approaches provide much better recall rates. The tables also show several cases where the
hierarchical clustering version outperforms the one-layer flat clustering approach.

An alternative presentation could have been to group the results by similar recall rate so as to show
that the clustering approach provides candidate sets much smaller for the same recall rates, meaning
that the clustering is more precise and better adapted to the data.

Figures 2, 3 and 4 (in Appendix A) show the recall rate for 1-MIPS, 10-MIPS and 100-MIPS re-
spectively as a function of the magnitude of the Gaussian noise added to the query vectors. Figure 2
shows that the hashing approaches have nearly perfect recall rate on the one best match task while
the noise is small, but once the noise increases the recall rates fall very rapidly, which is not so much
the case with the clustering approaches. On the 100-MIPS problem the hashing approaches perform
very badly even with no noise.

5.3 Performance considerations

The clustering approach is efficient for the search part as the hierarchical approach yields a com-
plexity of O(Ln1/L) when we have L levels of clustering. Clustering is however much slower for
the preprocessing part, i.e. when we build the clusters. This is especially true when we do bottom-up
clustering for the hierarchical method, where the algorithm basically goes to O(n2) complexity (to
be precise, O(n5/3) in the case of the two-layer clustering that we have experimented with). This is
due to our hierarchical approach being a bottom-up approach and could be partially solved by using
a top-down approach instead, which we have not explored.

6

Table 1: Query is one of the vectors in the dataset

Method 1-
MIPS

10-
MIPS

100-
MIPS

|C|

KM1
300 94.2% 61.6% 47.5% 390

HKM4 93.4% 74.3% 56 % 327
SRP 100% 28.8% 10.2% 333
KM2

300 99.1% 74.9% 63% 775
HKM8 98% 85% 70% 620
WTA 100% 43.8% 19.7% 663
KM3

300 99.8% 80.9% 71% 1159
HKM16 99.6% 91.5% 81% 1167

Table 2: Query is a random Gaussian vector

Method 1-
MIPS

10-
MIPS

100-
MIPS

|C|

HKM2 10.6% 8.6% 5.8% 112
SRP 1.4% 1.1% 0.9% 176
KM1

300 14.9% 12.8% 9.5% 326
HKM4 17.8% 14.8% 10.3% 214
WTA 2.5% 2.5% 1.9% 315
KM3

300 28.7% 25.6% 20% 988
HKM16 40.3% 34.8% 26.0% 794

Recall rate for various algorithms on 1-MIPS, 10-MIPS and 100-MIPS. KM stands for spherical k-means, the
subscript is the number K of clusters, the superscript is the number of best matching clusters considered as the
candidate set. HKM stands for hierarchical spherical k-means, the superscript is the number p of best matching
clusters considered at each level of the hierarchy. WTA stands for Winner Take All hashing. SRP stands for
Sign Random Projection hashing. Results are shown for the word2vec embeddings. |C| is the size of the
candidate set. Algorithms are grouped by similar candidate set sizes. We observe that for similar candidate set
sizes, the clustering approaches vastly outperform the hashing approach, meaning that the provided candidate
sets much better match the query.

Future work will investigate how we can adapt the clustering structure for clustering during a learn-
ing phase (e.g. as word embeddings evolve), which means that the performance problem will be
considered from the different perspective of online clustering.

6 Possible applications of clustering approaches to approximate MIPS

In simple neural probabilistic language models [1], the last layer of the neural network is a large ma-
trix of word embeddings that are matched against the vector output by the previous, hidden, layers.
A large softmax operation is done at the end so that the model outputs a probability distribution over
all words. The softmax operation is very expensive on large models (with several dozen, or several
hundred thousand words) and is often the main computational bottleneck in these methods.

To handle the large vocabulary size and speed up the training, several approaches have been sug-
gested, such as in [9] where the softmax is applied only on a subset of the whole vocabulary, and
the backpropagation is equally done also only on that subset (meaning that at any iteration of the
algorithm, only the embeddings for a limited number of words will be updated). The approach of [3]
uses WTA hashing to select the set of words whose embeddings are to be updated at each iteration.
The word embeddings are re-hashed in a rolling fashion, so that each embedding is re-hashed every
several thousand iterations.

We suggest that a similar approach can be tried where the set of words used in the softmax and
the backpropagation is not the whole vocabulary, but restricted to the candidate set given by one of
the clustering algorithms we have introduced, maybe combined with a random sampling approach.
Updating the clustering data structure as the word embeddings evolve remains an open problem, but
a potential solution may be based on online k-means variants [4, 18].

7 Discussion and conclusion

k-MIPS is a problem that arises in many scenarios where we have to exploit models over a very large
number of classes, such as is the case with natural language models. In this paper we have proposed
a new and efficient way of solving approximate k-MIPS based on clustering, which we suggest could
be a viable alternative to currently used LSH techniques. The advantage of clustering result from
the fact that clustering is a data-dependant data structure, meaning that it adapts to the geometry
of the data. We have shown that using many small clusters is better than using few large clusters,
and have proposed a hierarchical clustering algorithm to deal with the growing computational costs

7

associated with small clusters. Results on a simple benchmark task have shown that our approach
is viable and compares favorably with LSH. This is especially true when the query points are not
exactly one of the datapoints of the training set, which is the case that will matter most for practical
applications inside learning algorithms, i.e. clustering MIPS generalizes better to related but unseen
data than the hashing approaches we evaluated.

In further research we hope to explore new methods for training large language models using a
clustering-based speed-up, which is currently one of the main applications of LSH.

Acknowledgments

The authors would like to thank the developpers of Theano [19,20] for developping such a powerfull
tool. We acknowlege the support of the following organizations for research funding and computing
support: Samsung, NSERC, Calcul Québec, Compute Canada, the Canada Research Chairs and
CIFAR.

References
[1] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language

model. 3:1137–1155, 2003.

[2] Anshumali Shrivastava and Ping Li. Improved asymmetric locality sensitive hashing (ALSH) for maxi-
mum inner product search (MIPS). arxiv:1410.5410, 2014.

[3] Sudheendra Vijayanarasimhan, Jonathon Shlens, Rajat Monga, and Jay Yagnik. Deep networks with large
output spaces. arxiv:1412.7479, 2014.

[4] Shi Zhong. Efficient online spherical k-means clustering. In Neural Networks, 2005. IJCNN’05. Proceed-
ings. 2005 IEEE International Joint Conference on, volume 5, pages 3180–3185. IEEE, 2005.

[5] Frédéric Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. pages
246–252, 2005.

[6] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
in vector space. In International Conference on Learning Representations: Workshops Track, 2013.

[7] Yongzhe Shi, Wei-Qiang Zhang, Jia Liu, and Michael T Johnson. RNN language model with word
clustering and class-based output layer. EURASIP Journal on Audio, Speech, and Music Processing,
2013(1):1–7, 2013.

[8] Andriy Mnih and Geoffrey E. Hinton. A scalable hierarchical distributed language model. pages 1081–
1088, 2009.

[9] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using very large target
vocabulary for neural machine translation. arXiv:1412.2007, 2014.

[10] Y. Dauphin, X. Glorot, and Y. Bengio. Large-scale learning of embeddings with reconstruction sampling.
In Proceedings of the 28th International Conference on Machine learning, ICML ’11, 2011.

[11] M. Gutmann and A. Hyvarinen. Noise-contrastive estimation: A new estimation principle for unnormal-
ized statistical models. 2010.

[12] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, and J. Dean. Distributed representations of words and
phrases and their compositionality. In NIPS’2013, pages 3111–3119. 2013.

[13] Anshumali Shrivastava and Ping Li. Asymmetric LSH (ALSH) for sublinear time maximum inner product
search (MIPS). In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 2321–2329. Curran Associates, Inc., 2014.

[14] Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric LSHs for inner product search.
arxiv:1410.5518, 2014.

[15] James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages
281–297. Oakland, CA, USA., 1967.

[16] Stuart Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on, 28(2):129–
137, 1982.

[17] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 12:2493–
2537, 2011.

8

[18] Leon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms. In Advances in
Neural Information Processing Systems 7,[NIPS Conference, Denver, Colorado, USA, 1994], pages 585–
592, 1994.

[19] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU and GPU math expres-
sion compiler. In Proc. SciPy, 2010.

[20] Frederic Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano: new features and speed im-
provements. Submited to the Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop,
http://www.iro.umontreal.ca/ lisa/publications2/index.php/publications/show/551, 2012.

9

A Complete results on word2vec embeddings

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
noise σ

0

20

40

60

80

100

re
ca

ll
ra

te
 (

%
)

KM 1
300

KM 3
300

HKM4

HKM16

WTA

SRP

Figure 2: Recall rate degradation with noise magnitude, on top-1 recall task. Although hashing is very efficient
in low noise regimes, its efficiency drops drastically and much more rapidly than clustering when the noise
increases.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
noise σ

0

20

40

60

80

100

re
ca

ll
ra

te
 (

%
)

KM 1
300

KM 3
300

HKM4

HKM16

WTA

SRP

Figure 3: Recall rate degradation with noise magnitude, on top-10 recall task.

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
noise σ

0

10

20

30

40

50

60

70

80

90

re
ca

ll
ra

te
 (

%
)

KM 1
300

KM 3
300

HKM4

HKM16

WTA

SRP

Figure 4: Recall rate degradation with noise magnitude, on top-100 recall task. We observe that hashing is
very inefficient for this task even in low-noise regimes, whereas clustering provides robust results.

B Complete results on Collobert and Weston embeddings

0.0 0.5 1.0 1.5 2.0
noise σ

10

20

30

40

50

60

70

80

90

100

re
ca

ll
ra

te
 (

%
)

KM 1
300

KM 3
300

HKM4

HKM16

WTA

SRP

Figure 5: Recall rate degradation with noise magnitude, on top-1 recall task.

11

0.0 0.5 1.0 1.5 2.0
noise σ

0

10

20

30

40

50

60

70

80

90

re
ca

ll
ra

te
 (

%
)

KM 1
300

KM 3
300

HKM4

HKM16

WTA

SRP

Figure 6: Recall rate degradation with noise magnitude, on top-10 recall task.

0.0 0.5 1.0 1.5 2.0
noise σ

0

10

20

30

40

50

60

70

80

re
ca

ll
ra

te
 (

%
)

KM 1
300

KM 3
300

HKM4

HKM16

WTA

SRP

Figure 7: Recall rate degradation with noise magnitude, on top-100 recall task.

12

	1 Introduction
	2 Related work
	2.1 Hierarchical softmax and clustering approaches for large vocabularies
	2.2 Sampling based approaches to the large vocabulary problem
	2.3 Locality sensitive hashing for approximate k-MIPS
	2.4 MIPS to MCSS transformation

	3 Adapting k-means clustering for maximum inner product search
	3.1 Standard k-means for approximate L2 nearest neighbour search
	3.2 A variant of k-means clustering for approximate k-MCSS
	3.3 Adapting spherical k-means for approximate k-MIPS

	4 Hierarchical k-means for faster and better recall
	5 Experimental results
	5.1 Experimental setting
	5.2 Results on recall rate
	5.3 Performance considerations

	6 Possible applications of clustering approaches to approximate MIPS
	7 Discussion and conclusion
	A Complete results on word2vec embeddings
	B Complete results on Collobert and Weston embeddings

