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Abstract

It has recently been shown that, contrarily to a common belief, money
transfer in the presence of faulty (Byzantine) processes does not require
strong agreement such as consensus. This article goes one step further:
namely, it first proposes a non-sequential specification of the money-transfer
object, and then presents a generic algorithm based on a simple FIFO order
between each pair of processes that implements it. The genericity dimension
lies in the underlying reliable broadcast abstraction which must be suited to
the appropriate failure model. Interestingly, whatever the failure model, the
money transfer algorithm only requires adding a single sequence number to
its messages as control information. Moreover, as a side effect of the pro-
posed algorithm, it follows that money transfer is a weaker problem than the
construction of a safe/regular/atomic read/write register in the asynchronous
message-passing crash-prone model.

Keywords: Asynchronous message-passing system, Byzantine process, Dis-
tributed computing, Efficiency, Fault tolerance, FIFO message order, Mod-
ularity, Money transfer, Process crash, Reliable broadcast, Simplicity.

1 Introduction
Short historical perspective Like field-area or interest-rate computations, money
transfers have had a long history (see e.g., [21, 27]). Roughly speaking, when
looking at money transfer in today’s digital era, the issue consists in building a



software object that associates an account with each user and provides two oper-
ations, one that allows a process to transfer money from one account to another
and one that allows a process to read the current value of an account.

The main issue of money transfer lies in the fact that the transfer of an amount
of money v by a user to another user is conditioned to the current value of the
former user’s account being at least v. A violation of this condition can lead
to the problem of double spending (i.e., the use of the same money more than
once), which occurs in the presence of dishonest processes. Another important
issue of money transfer resides in the privacy associated with money accounts.
This means that a full solution to money transfer must address two orthogonal
issues: synchronization (to guarantee the consistency of the money accounts) and
confidentiality/security (usually solved with cryptography techniques). Here, like
in closely related work [14], we focus on synchronization.

Fully decentralized electronic money transfer was introduced in [25] with the
Bitcoin cryptocurrency in which there is no central authority that controls the
money exchanges issued by users. From a software point of view, Bitcoin adopts
a peer-to-peer approach, while from an application point of view it seems to have
been motivated by the 2008 subprime crisis [32].

To attain its goal Bitcoin introduced a specific underlying distributed software
technology called blockchain, which can be seen as a specific distributed state-
machine-replication technique, the aim of which is to provide its users with an
object known as a concurrent ledger. Such an object is defined by two operations,
one that appends a new item in such a way that, once added, the item cannot be re-
moved, and a second operation that atomically reads the full list of items currently
appended. Hence, a ledger builds a total order on the invocations of its operations.
When looking at the synchronization power provided by a ledger in the presence
of failures, measured with the consensus-number lens, it has been shown that the
synchronization power of a ledger is +∞ [13, 30]. In a very interesting way, re-
cent work [14] has shown that, in a context where each account has a single owner
who can spend the money currently in his/her account, the consensus number of
the money-transfer concurrent object is 1. An owner is represented by a process
in the following.

This is an important result, as it shows that the power of blockchain tech-
nology is much stronger (and consequently more costly) than necessary to im-
plement money transfer1. To illustrate this discrepancy, considering a sequential
specification of the money transfer object, the authors of [14] show first that, in
a failure-prone shared-memory system, money transfer can be implemented on
top of a snapshot object [1] (whose consensus number is 1, and consequently

1As far as we know, the fact that consensus is not necessary to implement money transfer was
stated for the first time in [15].



can be implemented on top of read/write atomic registers). Then, they appropri-
ately modify their shared-memory algorithm to obtain an algorithm that works
in asynchronous failure-prone message-passing systems. To allow the processes
to correctly validate the money transfers, the resulting algorithm demands them
to capture the causality relation linking money transfers and requires each mes-
sage to carry control information encoding the causal past of the money transfer
it carries.

Content of the article The present article goes even further. It first presents a
non-sequential specification of the money transfer object2, and then shows that,
contrarily to what is currently accepted, the implementation of a money transfer
object does not require the explicit capture of the causality relation linking individ-
ual money transfers. To this end, we present a surprisingly simple yet efficient and
generic money-transfer algorithm that relies on an underlying reliable-broadcast
abstraction. It is efficient as it only requires a very small amount of meta-data in
its messages: in addition to money-transfer data, the only control information car-
ried by the messages of our algorithm is reduced to a single sequence number. It is
generic in the sense that it can accommodate different failure models with no mod-
ification. More precisely, our algorithm inherits the fault-tolerance properties of
its underlying reliable broadcast: it tolerates crashes if used with a crash-tolerant
reliable broadcast, and Byzantine faults if used with a Byzantine-tolerant reliable
broadcast.

Given an n-process system where at most t processes can be faulty, the pro-
posed algorithm works for t < n in the crash failure model, and t < n/3 in the
Byzantine failure model. This has an interesting side effect on the distributed
computability side. Namely, in the crash failure model, money transfer consti-
tutes a weaker problem than the construction of a safe/regular/atomic read/write
register (where “weaker” means that—unlike a read/write register—it does not
require the “majority of non-faulty processes” assumption).

Roadmap The article consists of 7 sections. First, Section 2 introduces the dis-
tributed failure-prone computing models in which we are interested, and Section 3
provides a definition of money transfer suited to these computing models. Then,
Section 4 presents a very simple generic money-transfer algorithm. Its instanti-
ations and the associated proofs are presented in Section 5 for the crash failure
model and in Section 6 for the Byzantine failure model. Finally, Section 7 con-
cludes the article.3

2To our knowledge, this is the first non-sequential specification of the money transfer object
proposed so far.

3Let us note that similar ideas have been developed concomitantly and independently in [10],
which presents a money transfer system and its experimental evaluation.



2 Distributed Computing Models

2.1 Process failure model

Process model The system comprises a set of n sequential asynchronous pro-
cesses, denoted p1, ..., pn

4. Sequential means that a process invokes one operation
at a time, and asynchronous means that each process proceeds at its own speed,
which can vary arbitrarily and always remains unknown to the other processes.

Two process failure models are considered. The model parameter t denotes
an upper bound on the number of processes that can be faulty in the considered
model. Given an execution r (run) a process that commits failures in r is said to
be faulty in r, otherwise it is non-faulty (or correct) in r.

Crash failure model In this model, processes may crash. A crash is a premature
definitive halt. This means that, in the crash failure model, a process behaves
correctly (i.e., executes its algorithm) until it possibly crashes. This model is
denoted CAMPn,t[∅] (Crash Asynchronous Message Passing). When t is restricted
not to bypass a bound f (n), the corresponding restricted failure model is denoted
CAMPn,t[t ≤ f (n)].

Byzantine failure model In this model, processes can commit Byzantine fail-
ures [23, 28], and those that do so are said to be Byzantine. A Byzantine failure
occurs when a process does not follow its algorithm. Hence a Byzantine process
can stop prematurely, send erroneous messages, send different messages to dis-
tinct processes when it is assumed to send the same message, etc. Let us also
observe that, while a Byzantine process can invoke an operation which generates
application messages5 it can also “simulate” this operation by sending fake im-
plementation messages that give their receivers the illusion that they have been
generated by a correct sender. However, we assume that there is no Sybil attack
like most previous work on byzantine fault tolerance including [14].6

As previously, the notations BAMPn,t[∅] and BAMPn,t[t ≤ f (n)] (Byzantine
Asynchronous Message Passing) are used to refer to the corresponding Byzantine
failure models.

4Hence the system we consider is static (according to the distributed computing community
parlance) or permissioned (according to the blockchain community parlance).

5An application message is a message sent at the application level, while an implementation is
low level message used to ensure the correct delivery of an application message.

6As an example, a Byzantine process can neither spawn new identities, nor assume the identity
of existing processes.



2.2 Underlying complete point-to-point network

The set of processes communicate through an underlying message-passing point-
to-point network in which there exists a bidirectional channel between any pair
of processes. Hence, when a process receives a message, it knows which process
sent this message. For simplicity, in writing the algorithms, we assume that a
process can send messages to itself.

Each channel is reliable and asynchronous. Reliable means that a channel
does not lose, duplicate, or corrupt messages. Asynchronous means that the tran-
sit delay of each message is finite but arbitrary. Moreover, in the case of the
Byzantine failure model, a Byzantine process can read the content of the mes-
sages exchanged through the channels, but cannot modify their content.

To make our algorithm as generic and simple as possible, Section 4 does not
present it in terms of low-level send/receive operations7 but in terms of a high-
level communication abstraction, called reliable broadcast (e.g., [7, 9, 16, 19,
30]). The definition of this communication abstraction appears in Section 5 for the
crash failure model and Section 6 for the Byzantine failure model. It is important
to note that the previously cited reliable broadcast algorithms do not use sequence
numbers. They only use different types of implementation messages which can
be encoded with two bits.

3 Money Transfer: a Formal Definition

Money transfer: operations From an abstract point of view, a money-transfer
object can be seen as an abstract array ACCOUNT[1..n] where ACCOUNT[i] rep-
resents the current value of pi’s account. This object provides the processes with
two operations denoted balance() and transfer(), whose semantics are defined
below. The transfer by a process of the amount of money v to a process p j is
represented by the pair 〈 j, v〉. Without loss of generality, we assume that a process
does not transfer money to itself. It is assumed that each ACCOUNT[i] is initial-
ized to a non-negative value denoted init[i]. It is assumed the array init[1..n]
is initially known by all the processes.8

Informally, when pi invokes balance( j) it obtains a value (as defined below)
of ACCOUNT[ j], and when it invokes the transfer 〈 j, v〉, the amount of money
v is moved from ACCOUNT[i] to ACCOUNT[ j]. If the transfer succeeds, the
operation returns commit, if it fails it returns abort.

7Actually the send and receive operations can be seen as “machine-level” instructions provided
by the network.

8It is possible to initialize some accounts to negative values. In this case, we must assume
pos > neg, where pos (resp., neg) is the sum of all the positive (resp., negative) initial values.



Histories The following notations and definitions are inspired from [2].

• A local execution history (or local history) of a process pi, denoted Li, is a
sequence of operations balance() and transfer() issued by pi. If an opera-
tion op1 precedes an operation op2 in Li, we say that “op1 precedes op2 in
process order”, which is denoted op1→i op2.

• An execution history (or history) H is a set of n local histories, one per
process, H = (L1, · · · , Ln).

• A serialization S of a history H is a sequence that contains all the operations
of H and respects the process order→i of each process pi.

• Given a history H and a process pi, let Ai,T (H) denote the history (L′1, ..., L
′
n)

such that
– L′i = Li, and
– For any j , i: L′j contains only the transfer operations of p j.

Notations
• An operation transfer( j, v) invoked by pi is denoted trfi( j, v).

• An invocation of balance( j) that returns the value v is denoted blc( j)/v.

• Let H be a set of operations.

– plus( j,H) = Σtrfk( j,v)∈H v (total of the money given to p j in H).
– minus( j,H) = Σtrf j(k,v)∈H v (total of the money given by p j in H).
– acc( j,H) = init[ j]+plus( j,H)−minus( j,H) (value of ACCOUNT[ j]

according to H).

• Given a history H and a process pi, let S i be a serialization of Ai,T (H)
(hence, S i respects the n process orders defined by H). Let →S i denote
the total order defined by S i.

Money-transfer-compliant serialization A serialization S i of Ai,T (H) is money-
transfer compliant (MT-compliant) if:

• For any operation trf j(k, v) ∈ S i, we have
v ≤ acc( j, {op ∈ S i | op→S i trf j(k, v)}), and

• For any operation blc( j)/v ∈ S i, we have
v = acc( j, {op ∈ S i | op→S i blc( j)/v}).

MT-compliance is the key concept at the basis of the definition of a money-transfer
object. It states that it is possible to associate each process pi with a total order S i

in which (a) each of its invocations of balance( j) returns a value v equal to p j’s
account’s current value according to S i, and (b) processes transfer only money
that they have.



Let us observe that the common point among the serializations S 1, ..., S n lies
in the fact that each process sees all the transfer operations of any other process p j

in the order they have been produced (as defined by L j), and sees its own transfer
and balance operations in the order it produced them (as defined by Li).

Money transfer in CAMPn,t[∅] Considering the CAMPn,t[∅] model, a money-
transfer object is an object that provides the processes with balance() and transfer()
operations and is such that, for each of its executions, represented by the corre-
sponding history H, we have:

• All the operations invoked by correct processes terminate.

• For any correct process pi, there is an MT-compliant serialization S i of
Ai,T (H), and

• For any faulty process pi, there is a history H′ = (L′1, ..., L
′
n) where (a) L′j is

a prefix of L j for any j , i, and (b) L′i = Li, and there is an MT-compliant
serialization of Ai,T (H′).

An algorithm implementing a money transfer object is correct in CAMPn,t[∅] if
it produces only executions as defined above. We then say that the algorithm is
MT-compliant.

Money transfer in BAMPn,t[∅] The main differences between money transfer in
CAMPn,t[∅] and BAMPn,t[∅] lies in the fact that a faulty process can try to transfer
money it does not have, and try to present different behaviors with respect to
different correct processes. This means that, while the notion of a local history Li

is still meaningful for a non-Byzantine process, it is not for a Byzantine process.
For a Byzantine process, we therefore define a mock local history for a process pi

as any sequence of transfer operations from pi’s account9. In this definition, the
mock local history Li associated with a Byzantine process pi is not necessarily the
local history it produced, it is only a history that it could have produced from the
point of view of the correct processes. The correct processes implement a money-
transfer object if they all behave in a manner consistent with the same set of mock
local histories for the Byzantine processes. More precisely, we define a mock
history associated with an execution on a money transfer object in BAMPn,t[∅] as
H̃ = (L̃1, ..., L̃n) where:

L̃ j =

L j if p j is correct,
a mock local history if p j is Byzantine.

9Let us remind that the operations balance() issued by a Byzantine can return any value. So
they are not considered in the mock histories associated with Byzantine processes.



Considering the BAMPn,t[∅] model, a money transfer object is such that, for each
of its executions, there exists a mock history H̃ such that for any correct process pi,
there is an MT-compliant serialization S i of Ai,T (H̃). An algorithm implementing
such executions is said to be MT-compliant.

Concurrent vs sequential specification Let us notice that the previous spec-
ification considers money transfer as a concurrent object. More precisely and
differently from previous specifications of the money transfer object, it does not
consider it as a sequential object for which processes must agree on the very
same total order on the operations they issue [17]. As a simple example, let us
consider two processes pi and p j that independently issue the transfers trfi(k, v)
and trf j(k, v′) respectively. The proposed specification allows these transfers (and
many others) to be seen in different order by different processes. As far as we
know, this is the first specification of money transfer as a non-sequential object.

4 A Simple Generic Money Transfer Algorithm
This section presents a generic algorithm implementing a money transfer object.
As already said, its generic dimension lies in the underlying reliable broadcast
abstraction used to disseminate money transfers to the processes, which depends
on the failure model.

4.1 Reliable broadcast
Reliable broadcast provides two operations denoted r_broadcast() and r_deliver().
Because a process is assumed to invoke reliable broadcast each time it issues a
money transfer, we use a multi-shot reliable broadcast, that relies on explicit se-
quence numbers to distinguish between its different instances (more on this be-
low). Following the parlance of [16] we use the following terminology: when a
process invokes r_broadcast(sn,m), we say it “r-broadcasts the message m with
sequence number sn”, and when its invocation of r_deliver() returns it a pair
(sn,m), we say it “r-delivers m with sequence number sn”. While definitions of re-
liable broadcast suited to the crash failure model and the Byzantine failure model
will be given in Section 5 and Section 6, respectively, we state their common
properties below.

• Validity. This property states that there is no message creation. To this end,
it relates the outputs (r-deliveries) to the inputs (r-broadcasts). Excluding
malicious behaviors, a message that is r-delivered has been r-broadcast.

• Integrity. This property states that there is no message duplication.



• Termination-1. This property states that correct processes r-deliver what
they broadcast.

• Termination-2. This property relates the sets of messages r-delivered by
different processes.

The Termination properties ensure that all the correct processes r-deliver the same
set of messages, and that this set includes at least all the messages that they r-
broadcast.

As mentioned above, sequence numbers are used to identify different instances
of the reliable broadcast. Instead of using an underlying FIFO-reliable broadcast
in which sequence numbers would be hidden, we expose them in the input/output
parameters of the r_broadcast() and r_deliver() operations, and handle their up-
dates explicitly in our generic algorithm. This reification10 allows us to capture
explicitly the complete control related to message r-deliveries required by our al-
gorithm. As we will see, it follows that the instantiations of the previous Integrity
property (crash and Byzantine models) will explicitly refer to “upper layer” se-
quence numbers.

We insist on the fact that the reliable broadcast abstraction that the proposed
algorithm depends on does not itself provide the FIFO ordering guarantee. It only
uses sequence numbers to identify the different messages sent by a process. As
explained in the next section, the proposed generic algorithm implements itself
the required FIFO ordering property.

4.2 Generic money transfer algorithm: local data structures
As said in the previous section, init[1..n] is an array of constants, known by all
the processes, such that init[k] is the initial value of pk’s account, and a transfer
of the quantity v from a process pi to a process pk is represented by the pair 〈k, v〉.
Each process pi manages the following local variables:

• sni: integer variable, initialized to 0, used to generate the sequence numbers
associated with the transfers issued by pi (it is important to notice that the
point-to-point FIFO order realized with the sequence numbers is the only
“causality-related” control information used in the algorithm).

• deli[1..n]: array initialized to [0, · · · , 0] such that deli[ j] is the sequence
number of the last transfer issued by p j and locally processed by pi.

• accounti[1..n]: array, initialized to init[1..n], that is a local approximate
representation of the abstract array ACCOUNT[1..n], i.e., accounti[ j] is the
value of p j’s account, as known by pi.

10Reification is the process by which an implicit, hidden or internal information is explicitly
exposed to a programmer.



While other local variables containing bookkeeping information can be added
according to the application’s needs, it is important to insist on the fact that the
proposed algorithm needs only the three previous local variables (i.e., (2n+1) local
registers) to solve the synchronization issues that arise in fault-tolerant money
transfer.

4.3 Generic money transfer algorithm: behavior of a process pi

Algorithm 1 describes the behavior of a process pi. When it invokes balancei( j),
pi returns the current value of accounti[ j] (line 1).

init: accounti[1..n]← init[1..n]; sni ← 0; deli[1..n]← [0, · · · , 0].

operation balance( j) is
(1) return(account[ j]).

operation transfer( j, v) is
(2) if (v ≤ accounti[i])
(3) then sni ← sni + 1; r_broadcast(sni, TRANSFER〈 j, v〉);
(4) wait (deli[i] = sni); return(commit)
(5) else return(abort)
(6) end if.

when (sn,TRANSFER〈k, v〉) is r_delivered from p j do
(7) wait

(
(sn = deli[ j] + 1) ∧ (accounti[ j] ≥ v)

)
;

(8) accounti[ j]← accounti[ j] − v; accounti[k]← accounti[k] + v;
(9) deli[ j]← sn.

Algorithm 1: Generic broadcast-based money transfer algorithm (code for pi)

When it invokes transfer( j, v), pi first checks if it has enough money in its
account (line 2) and returns abort if it does not (line 5). If process pi has enough
money, it computes the next sequence number sni and r-broadcasts the pair (sni,
TRANSFER〈 j, v〉) (line 3). Then pi waits until it has locally processed this transfer
(lines 7-9), and finally returns commit. Let us notice that the predicate at line 7 is
always satisfied when pi r-delivers a transfer message it has r-broadcast.

When pi r-delivers a pair (sn, TRANSFER〈k, v〉) from a process p j, it does not
process it immediately. Instead, pi waits until (i) this is the next message it has
to process from p j (to implement FIFO ordering) and (ii) its local view of the
money transfers to and from p j (namely the current value of accounti[ j]) allows
this money transfer to occur (line 7). When this happens, pi locally registers the
transfer by moving the quantity v from accounti[ j] to accounti[k] (line 8) and
increases deli[ j] (line 9).



5 Crash Failure Model: Instantiation and Proof
This section presents first the crash-tolerant reliable broadcast abstraction whose
operations instantiate the r_broadcast() and r_deliver() operations used in the
generic algorithm. Then, using the MT-compliance notion, it proves that Algo-
rithm 1 combined with a crash-tolerant reliable broadcast implements a money
transfer object in CAMPn,t[∅]. It also shows that, in this model, money transfer is
weaker than the construction of an atomic read/write register. Finally, it presents
a simple weakening of the FIFO requirement that works in the CAMPn,t[∅] model.

5.1 Multi-shot reliable broadcast abstraction in CAMPn,t[∅]

This communication abstraction, named CR-Broadcast, is defined by the two op-
erations cr_broadcast() and cr_deliver(). Hence, we use the terminology “to cr-
broadcast a message”, and “to cr-deliver a message”.

• CRB-Validity. If a process pi cr-delivers a message with sequence number
sn from a process p j, then p j cr-broadcast it with sequence number sn.

• CRB-Integrity. For each sequence number sn and sender p j a process pi

cr-delivers at most one message with sequence number sn from p j.

• CRB-Termination-1. If a correct process cr-broadcasts a message, it cr-
delivers it.

• CRB-Termination-2. If a process cr-delivers a message from a (correct or
faulty) process p j, then all correct processes cr-deliver it.

CRB-Termination-1 and CRB-Termination-2 capture the “strong” reliability prop-
erty of CR-Broadcast, namely: all the correct processes cr-deliver the same set S
of messages, and this set includes at least the messages they cr-broadcast. More-
over, a faulty process cr-delivers a subset of S . Algorithms implementing the
CR-Broadcast abstraction in CAMPn,t[∅] are described in [16, 30].

5.2 Proof of the algorithm in CAMPn,t[∅]

Lemma 1. Any invocation of balance() or transfer() issued by a correct process
terminates.

Proof The fact that any invocation of balance() terminates follows immediately
from the code of the operation.

When a process pi invokes transfer( j, v), it r-broadcasts a message and, due
to the CRB-Termination properties, pi receives its own transfer message and the
predicate (line 7) is necessarily satisfied. This is because (i) only pi can transfer



its own money, (ii) the wait statement of line 4 ensures the current invocation
of transfer( j, v) does not return until the corresponding TRANSFER message is
processed at lines 8-9, and (iii) the fact that accounti[i] cannot decrease between
the execution of line 3 and the one of line 7. It follows that pi terminates its
invocation of transfer( j, v). �Lemma 1

The safety proof is more involved. It consists in showing that any execution satis-
fies MT-compliance as defined in Section 3.

Notation and definition
• Let trfsn

j (k, v) denote the operation trf(k, v) issued by p j with sequence num-
ber sn.

• We say a process pi processes the transfer trfsn
j (k, v) if, after it cr-delivered

the associated message TRANSFER〈k, v〉 with sequence number sn, p j ex-
its the wait statement at line 7 and executes the associated statements at
lines 8-9. The moment at which these lines are executed is referred to as the
moment when the transfer is processed by pi. (These notions are related to
the progress of processes.)

• If the message TRANSFER cr-broadcast by a process is cr-delivered by a
correct process, we say that the transfer is successful. (Let us notice that a
message cr-broadcast by a correct process is always successful.)

Lemma 2. If a process pi processes trfsn
` (k, v), then any correct process pro-

cesses it.

Proof Let m1, m2, ... be the sequence of transfers processed by pi and let p j be
a correct process. We show by induction on z that, for all z, p j processes all the
messages m1, m2, ...,mz.

Base case z = 0. As the sequence of transfers is empty, the proposition is
trivially satisfied.

Induction. Taking z ≥ 0, suppose p j processed all the transfers m1, m2, ...,mz.
We have to show that p j processes mz+1. Note that m1, m2, ...,mz do not typically
originate from the same sender, and are therefore normally processed by p j in a
different order than pi, possibly mixed with other messages. This also applies to
mz+1. If mz+1 was processed by p j before mz, we are done. Otherwise there is a
time τ at which p j processed all the transfers m1, m2, ...,mz (case assumption),
cr-delivered mz+1 (CBR-Termination-2 property), but has not yet processed mz+1.
Let mz+1 = trfsn

` (k, v). At time τ, we have the following.

• On one side, del j[`] ≤ sn − 1 since messages are processed in FIFO order
and mz+1 has not yet been processed. On the other side, del j[`] ≥ sn − 1
because either sn = 1 or trfsn−1

` (−,−) ∈ m1, ...,mz, where trfsn−1
` (−,−) is the



transfer issued by p` just before mz+1 = trfsn
` (k, v) (otherwise pi would not

have processed mz+1 just after m1, ...,mz). Thus del j[`] = sn − 1.

• Let us now shown that, at time τ, account j[`] ≥ v. To this end let plusz+1
i (`)

denote the money transferred to p` as seen by pi just before pi processes
mz+1, and minusz+1

i (`) denote the money transferred from p` as seen by pi

just before pi processes mz+1. Similarly, let plusz+1
j (`) denote the money

transferred to p` as seen by p j at time τ and minusz+1
j (`) denote the money

transferred from p` as seen by p j at time τ. Let us consider the following
sums:

– On the side of the money transferred to p` as seen by p j. Due to induc-
tion, all the transfers to p` included in m1, m2, . . . ,mz (and possibly
more transfers to p`) have been processed by p j, thus plusz+1

j (`) ≥
Σtrfk′ (`,w)∈{m1,m2,...,mz}w and, as pi processed the messages in the order
m1, ...,mz,mz+1 (assumption), we have plusz+1

i (`) = Σtrfk′ (`,w)∈{m1,m2,...,mz}w.
Hence, plusz+1

j (`) ≥ plusz+1
i (`).

– On the side of the money transferred from p` as seen by p j. Let
us observe that p j has processed all the transfers from p` with a se-
quence number smaller than sn and no transfer from p` with a se-
quence number greater than or equal to sn, thus we have minusz+1

j (`) =

Σtrf`(k′,w)∈{m1,m2,...,mz}w = minusz+1
i (`).

Let accountz+1
i [`] be the value of accounti[`] just before pi processes mz+1,

and accountz+1
j [`] be the value of account j[`] at time τ. As accountz+1

j [`] =

init[`]+plusz+1
j (`)−minusz+1

j (`) and accountz+1
i [`] = init[`]+plusz+1

i (`)−
minusz+1

i (`), it follows that account j[`] is greater than or equal to the value
of accounti[`] just before pi processes mz+1, which was itself greater than
or equal to v (otherwise pi would not have processed mz+1 at that time). It
follows that account j[`] ≥ v.

The two predicates of line 7 are therefore satisfied, and will remain so until mz+1

is processed (due to the FIFO order on transfers issued by p`), thus ensuring that
process p j processes the transfer mz+1. �Lemma 2

Lemma 3. If a process pi issues a successful money transfer trfsn
i (k, v) (i.e., it cr-

broadcasts it in line 3), any correct process eventually cr-delivers and processes it.

Proof When process pi cr-broadcast money transfer trfsn
i (k, v), the local predicate

(sn = deli[i] + 1) ∧ (accounti[i] ≥ v) was true at pi. When pi cr-delivers its own
transfer message, the predicate is still true at line 7 and pi processes its transfer
(if pi crashes after having cr-broadcast the transfer and before processing it, we



extend its execution—without loss of correctness—by assuming it crashed just
after processing the transfer). It follows from Lemma 2 that any correct process
processes trfsn

i (k, v). �Lemma 3

Theorem 1. Algorithm 1 instantiated with CR-Broadcast implements a money
transfer object in the CAMPn,t[∅] system model, and ensures that all operations
by correct processes terminate.

Proof Lemma 1 proved that the invocations of the operations balance() and
transfer() by the correct processes terminate. Let us now consider MT-compliance.

Considering any execution of the algorithm, captured as history H = (L1, ..., Ln),
let us first consider a correct process pi. Let S i be the sequence of the following
events happening at pi (these events are “instantaneous” in the sense pi is not
interrupted when it produces each of them):

• the event blc( j)/v occurs when pi invokes balance( j) and obtains v (line 1),
• and the event trfsn

j (k, v) occurs when pi processes the corresponding transfer
(lines 8-9 executed without interruption).

We show that S i is an MT-compliant serialization of Ai,T (H). When considering
the construction of S i, we have the following:

• For all trfsn
j (k, v) ∈ L j we have that p j cr-broadcast this transfer and that

(sn, TRANSFER〈k, v〉) was received by p j and was therefore successful: it
follows from Lemma 3 that pi processes this money transfer, and conse-
quently we have trfsn

j (k, v) ∈ S i.

• For all op1 = trfsn
j (k, v) and op2 = trfsn′

j (k′, v′) in S i (two transfers issued by
p j) such that op1 → j op2, we have sn < sn′. Consequently pi processes
op1 before op2, and we have op1→S i op2.

• For all pairs op1 and op2 belonging to Li, their serialization order is the
same in Li and S i.

It follows that S i is a serialization of Ai,T (H). Let us now show that S i is MT-
compliant.

• Case where the event in S i is trfsn
j (k, v). In this case we have v ≤ acc( j, {op ∈

S i | op →S i trf j(k, v)} because this condition is directly encoded at pi in the
waiting predicate that precedes the processing of op.

• Case where the event in S i is blc( j)/v. In this case we have v = acc( j, {op ∈
S i | op→S i blc( j)/v}, because this is exactly the way how the returned value
v is computed in the algorithm.

This terminates the proof for the correct processes.



For a process pi that crashes, the sequence of money transfers from a process
p j that is processed by pi is a prefix of the sequence of money transfers issued by
p j (this follows from the FIFO processing order, line 7). Hence, for each process
pi that crashes there is a history H′ = (L′1, ..., L

′
n) where L′j is a prefix of L j for

each j , i and L′i = Li, such that, following the same reasoning, the construction
S i given above is an MT-compliant serialization of Ai,T (H′), which concludes the
proof of the theorem. �Theorem 1

5.3 Money transfer vs read/write registers in CAMPn,t[∅]

It is shown in [5] that it is impossible to implement an atomic read/write register
in the distributed system model CAMPn,t[∅], i.e., when, in addition to asynchrony,
any number of processes may crash. On the positive side, several algorithms
implementing such a register in CAMPn,t[t < n/2] have been proposed, each with
its own features (see for example [4, 5, 24] to cite a few). An atomic read/write
register can be built from safe or regular registers11 [22, 29, 33]. Hence, as atomic
registers, safe and regular registers cannot be built in CAMPn,t[∅] (although they
can in CAMPn,t[t < n/2]). As CAMPn,t[t < n/2] is a more constrained model
than CAMPn,t[∅], it follows that, from a CAMPn,t computability point of view, the
construction of a safe/regular/atomic read/write register is a stronger problem than
money transfer.

5.4 Replacing FIFO by a weaker ordering in CAMPn,t[∅]

An interesting question is the following one: is FIFO ordering necessary to im-
plement money transfer in the CAMPn,t[∅] model? While we conjecture it is, it
appears that, a small change in the specification of money transfer allows us to
use a weakened FIFO order, as shown below.

Weakened money transfer specification The change in the specification pre-
sented in Section 3 concerns the definition of the serialisation S i associated with
each process pi. In this modified version the serialization S i associated with each
process pi is no longer required to respect the process order on the operations is-
sued by p j, j , i. This means that two different process pi and pk may observe the
transfer() operations issued by a process p j in different orders (which captures the
fact that some transfer operations by a process p j are commutative with respect to
its current account).

11Safe and regular registers were introduced introduced in [22]. They have weaker specifications
than atomic registers.



Modification of the algorithm Let k be a constant integer ≥ 1. Let sni( j) be
the highest sequence number such that all the transfer messages from p j whose
sequence numbers belong to {1, · · · , .sni( j)} have been cr-delivered and processed
by a certain process pi (i.e., lines 8-9 have been executed for these messages).
Initially we have sni( j) = 0.

Let sn be the sequence number of a message cr-delivered by pi from p j. At
line 7 the predicate sn = deli[ j] + 1 can be replaced by the predicate sn ∈ {sni( j) +

1, · · · , sni( j) + k}. Let us notice that this predicate boils down to sn = deli[ j] + 1
when k = 1. More generally the set of sequence numbers {sni( j)+1, · · · , sni( j)+k}
defines a sliding window for sequence numbers which allows the corresponding
messages to be processed.

The important point here is the fact that messages can be processed in an order
that does not respect their sending order as long as all the messages are processed,
which is not guaranteed when k = +∞. Assuming p j issues an infinite number of
transfers, if k = +∞ it is possible that, while all these messages are cr-delivered by
pi, some of them are never processed at lines 8-9 (their processing being always
delayed by other messages that arrive after them). The finiteness of the value k
prevents this unfair message-processing order from occurring.

The proof of Section 5.2 must be appropriately adapted to show that this mod-
ification implements the weakened money-transfer specification.

6 Byzantine Failure Model: Instantiation and Proof
This section presents first the reliable broadcast abstraction whose operations in-
stantiate the r_broadcast() and r_deliver() operations used in the generic algo-
rithm. Then, it proves that the resulting algorithm correctly implements a money
transfer object in BAMPn,t[t < n/3].

6.1 Reliable broadcast abstraction in BAMPn,t[t < n/3]

The communication abstraction, denoted BR-Broadcast, was introduced in [7]. It
is defined by two operations denoted br_broadcast() and br_deliver() (hence we
use the terminology “br-broadcast a message” and “br-deliver a message”). The
difference between this communication abstraction and CR-Broadcast lies in the
nature of failures. Namely, as a Byzantine process can behave arbitrarily, CRB-
Validity, CRB-Integrity, and CRB-Termination-2 cannot be ensured. As an exam-
ple, it is not possible to ensure that if a Byzantine process br-delivers a message,
all correct processes br-deliver it. BR-Broadcast is consequently defined by the
following properties. Termination-1 is the same in both communication abstrac-
tions, while Integrity, Validity and Termination-2 consider only correct processes



(the difference lies in the added constraint written in italics).

• BRB-Validity. If a correct process pi br-delivers a message from a correct
process p j with sequence number sn, then p j br-broadcast it with sequence
number sn.

• BRB-Integrity. For each sequence number sn and sender p j a correct pro-
cess pi br-delivers at most one message with sequence number sn from
sender p j.

• BRB-Termination-1. If a correct process br-broadcasts a message, it br-
delivers it.

• BRB-Termination-2. If a correct process br-delivers a message from a (cor-
rect or faulty) process p j, then all correct processes br-deliver it.

It is shown in [8, 30] that t < n/3 is a necessary requirement to implement
BR-Broadcast. Several algorithms implementing this abstraction have been pro-
posed. Among them, the one presented in [7] is the most famous. It works in
the BAMPn,t[t < n/3] model, and requires three consecutive communication steps.
The one presented in [19] works in the more constrained BAMPn,t[t < n/5] model,
but needs only two consecutive communication steps. These algorithms show a
trade-off between optimal t-resilience and time-efficiency.

6.2 Proof of the algorithm in BAMPn,t[t < n/3]

The proof has the same structure, and is nearly the same, as the one for the process-
crash model presented in Section 5.2.

Notation and high-level intuition trfsn
j (k, v) now denotes a money transfer (or

the associated processing event by a process) that correct processes br-deliver
from p j with sequence number sn. If p j is a correct process, this definition is the
same as the one used in the model CAMPn,t[∅]. If p j is Byzantine, TRANSFER

messages from p j do not necessarily correspond to actual transfer() invocations
by p j, but the BRB-Termination-2 property guarantees that all correct processes
br-deliver the same set of TRANSFER messages (with the same sequence num-
bers), and therefore agree on how p j’s behavior should be interpreted. The reli-
able broadcast thus ensures a form of weak agreement among correct processes in
spite of Byzantine failures. This weak agreement is what allows us to move al-
most seamlessly from a crash-failure model to a Byzantine model, with no change
to the algorithm, and only a limited adaptation of its proof.

More concretely, Lemma 2 (for crash failures) becomes the next lemma whose
proof is the same as for Lemma 2 in which the reference to the CBR-Termination-
2 property is replaced by a reference to its BRB counterpart.



Lemma 4. If a correct process pi processes trfsn
j (k, v), then any correct process

processes it.

Similarly, Lemma 3 turns into its Byzantine counterpart, lemma 5.

Lemma 5. If a correct process pi br-broadcasts a money transfer trfsn
i (k, v) (line 3),

any correct processes eventually br-delivers and processes it.

Proof When a correct process pi br-broadcasts a money transfer trfsn
i (k, v), we

have (sn = deli[i] + 1)∧ (accounti[i] ≥ v), thus when it br-delivers it the predicate
of line 7 is satisfied. By Lemma 4, all the correct processes process this money
transfer. �Lemma 5

Theorem 2. Algorithm 1 instantiated with BR-Broadcast implements a money
transfer object in the system BAMPn,t[t < n/3] model, and ensures that all opera-
tions by correct processes terminate.

The model constraint t < n/3 is due only to the fact that Algorithm 1 uses BR-
broadcast (for which t < n/3 is both necessary and sufficient). As the invocations
of balance() by Byzantine processes may return arbitrary values and do not im-
pact the correct processes, they are not required to appear in their local histories.

Proof The proof that the operations issued by the correct processes terminate is
the same as in Lemma 1 where the CRB-Termination properties are replaced by
their BRB-Termination counterparts.

To prove MT-compliance, let us first construct mock local histories for Byzan-
tine processes: the mock local history Li associated with a Byzantine process p j is
the sequence of money transfers from p j that the correct processes br-deliver from
p j and that they process. (By Lemma 4 all correct processes process the same set
of money transfers from p j).

Let pi be a correct process and S i be the sequence of operations occurring at
pi defined in the same way as in the crash failure model. In this construction, the
following properties are respected:

• For all, trfsn
j (k, v) ∈ L j then

– if p j is correct, it br-broadcast this money transfer and, due to Lemma 5,
pi processes it, hence trfsn

j (k, v) ∈ S i.
– if p j is Byzantine, due to the definition of L j (sequence of money trans-

fers that correct processes br-delivers from p j and process), we have
trfsn

j (k, v) ∈ S i.

• For all op1 = trfsn
j (k, v) and op2 = trfsn′

j (k′, v′) (two transfers in L j ⊆ S i)
such that op1 → j op2, we have sn < sn′, consequently pi processes op1
before op2, and we have op1→S i op2.



• For all both op1 and op2 belonging to Li, their serialization order is the
same in Li as in S i (same as for the crash case).

It follows that S i is a serialization of Ai,T (H̃) where H̃ = (L1, .., Ln), Li being the
sequence of its operations if pi is correct, and a mock sequence of money transfers,
if it is Byzantine. The same arguments that were used in the crash failure model
can be used here to prove that S i is MT-compliant. Since all correct processes
observe the same mock sequence of operations L j for any given Byzantine pro-
cess p j, it follows that the algorithm implements an MT-compliant money transfer
object in BAMPn,t[t < n/3]. �Theorem 2

6.3 Extending to incomplete Byzantine networks

An algorithm is described in [31] which simulates a fully connected (point-to-
point) network on top of an asynchronous Byzantine message-passing system in
which, while the underlying communication network is incomplete (not all the
pairs of processes are connected by a channel), it is (2t + 1)-connected (i.e., any
pair of processes is connected by (2t + 1) disjoint paths12). Moreover, it is shown
that this connectivity requirement is both necessary and sufficient.13

Hence, denoting BAMPn,t[t < n/3, (2t + 1)-connected] such a system model,
this algorithm builds BAMPn,t[t < n/3] on top BAMPn,t[t < n/3, (2t+1)-connected]
(both models have the same computability power). It follows that the previous
money-transfer algorithm works in incomplete (2t + 1)-connected asynchronous
Byzantine systems where t < n/3.

7 Conclusion

The article has revisited the synchronization side of the money-transfer problem in
failure-prone asynchronous message-passing systems. It has presented a generic
algorithm that solves money transfer in asynchronous message-passing systems
where processes may experience failures. This algorithm uses an underlying reli-
able broadcast communication abstraction, which differs according to the type of
failures (process crashes or Byzantine behaviors) that processes can experience.

12“Disjoint” means that, given any pair of processes p and q, any two paths connecting p and
q share no process other than p and q. Actually, the (2t + 1)-connectivity is required only for any
pair of correct processes (which are not known in advance).

13This algorithm is a simple extension to asynchronous systems of a result first established
in [11] in the context of synchronous Byzantine systems.



In addition to its genericity (and modularity), the proposed algorithm is sur-
prisingly simple14 and particularly efficient (in addition to money-transfer data,
each message generated by the algorithm only carries one sequence number). As
a side effect, this algorithm has shown that, in the crash failure model, money
transfer is a weaker problem than the construction of a read/write register. As far
as the Byzantine failure model is concerned, we conjecture that t < n/3 is a nec-
essary requirement for money transfer (as it is for the construction of a read/write
register [18]).

Finally, it is worth noticing that this article adds one more member to the fam-
ily of algorithms that strive to “unify” the crash failure model and the Byzantine
failure model as studied in [6, 12, 20, 26].
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