
An algorithm for geo-distributed and
redundant storage in Garage

Mendes Oulamara∗ and Alex Auvolat†

Deuxfleurs

Abstract

This paper presents an optimal algorithm to compute the as-
signment of data to storage nodes in the Garage geo-distributed
storage system. We discuss the complexity of the different steps of
the algorithm and metrics that can be displayed to the user.

1 Introduction

Garage1 is an open-source distributed object storage service tailored for
self-hosting. It was designed by the Deuxfleurs association2 to enable small
structures (associations, collectives, small companies) to share storage re-
sources to reliably self-host their data, possibly with old and non-reliable
machines. To achieve these reliability and availability goals, the data is
broken into partitions and every partition is replicated over 3 different
machines (that we call nodes). When the data is queried, it is fetched
from one of the nodes. A replication factor of 3 ensures good guarantees
regarding node failure[1]. But this parameter can be another (preferably
larger and odd) number.

Moreover, if the nodes are spread over different zones (different houses,
offices, cities. . .), we can require the data to be replicated over nodes
belonging to different zones. This improves the storage robustness against

∗mendes@deuxfleurs.fr
†alex@adnab.me
1https://garagehq.deuxfleurs.fr/
2https://deuxfleurs.fr/

1

ar
X

iv
:2

30
2.

13
79

8v
1

 [
cs

.D
S]

 2
7

Fe
b

20
23

mendes@deuxfleurs.fr
alex@adnab.me
https://garagehq.deuxfleurs.fr/
https://deuxfleurs.fr/

zone failures (such as power outages). To do so, we define a scattering
factor, that is no more than the replication factor, and we require that the
replicas of any partition are spread over this number of zones at least.

In this work, we propose an assignment algorithm that, given the nodes
specifications and the replication and scattering factors, computes an op-
timal assignment of partitions to nodes. We say that the assignment is
optimal in the sense that it maximizes the size of the partitions, and hence
the effective storage capacity of the system.

Moreover, when a former assignment exists, which is not optimal any-
more due to node or zone changes, our algorithm computes a new optimal
assignment that minimizes the amount of data to be transferred during
the assignment update (the transfer load).

We call the set of nodes cooperating to store the data a cluster, and a
description of the nodes, zones and the assignment of partitions to nodes
a cluster layout

1.1 Notations

Let k be some fixed parameter value, typically 8, that we call the “partition
bits”. Every object to be stored in the system is split into data blocks of
fixed size. We compute a hash h(b) of every such block b, and we define
the k first bits of this hash to be the partition number p(b) of the block.
This label can take P = 2k different values, and hence there are P different
partitions. We denote P the set of partition labels (i.e. P = J1, P K).

We are given a set N of N nodes and a set Z of Z zones. Every node n
has a non-negative storage capacity cn ≥ 0 and belongs to a zone zn ∈ Z.
We are also given a replication factor ρN and a scattering factor ρZ such
that 1 ≤ ρZ ≤ ρN (typical values would be ρN = ρZ = 3).

Our goal is to compute an assignment α = (α1
p, . . . , α

ρN
p)p∈P such that

every partition p is associated to ρN distinct nodes α1
p, . . . , α

ρN
p ∈ N and

these nodes belong to at least ρZ distinct zones. Among the possible as-
signments, we choose one that maximizes the effective storage capacity of
the cluster. If the layout contained a previous assignment α′, we mini-
mize the amount of data to transfer during the layout update by making
α as close as possible to α′. These maximization and minimization are
described more formally in the following section.

2

1.2 Optimization objectives

To link the effective storage capacity of the cluster to partition assignment,
we make the following assumption:

All partitions have the same size s. (H1)

This assumption is justified by the dispersion of the hashing function,
when the number of partitions is small relative to the number of stored
blocks.

Every node n will store some number pn of partitions (it is the number
of partitions p such that n appears in the αp). Hence the partitions stored
by n (and hence all partitions by our assumption) have their size bounded
by cn/pn. This remark leads us to define the optimal size that we will
want to maximize:

s∗ = min
n∈N

cn
pn
. (OPT)

When the capacities of the nodes are updated (this includes adding
or removing a node), we want to update the assignment as well. How-
ever, transferring the data between nodes has a cost and we would like to
limit the number of changes in the assignment. We make the following
assumption:

Node changes happen rarely relatively to data block reads and writes.
(H2)

This assumption justifies that when we compute the new assignment
α, it is worth to optimize the partition size (OPT) first, and then, among
the possible optimal solutions, to try to minimize the number of partition
transfers. More formally, we minimize the distance between two assign-
ments defined by

d(α, α′) := #{(n, p) ∈ N×P | n ∈ αp4α′p} (1)

where the symmetric difference αp4α′p denotes the nodes appearing
in one of the assignments but not in both.

3

2 Computation of an optimal assignment

The algorithm that we propose takes as inputs the cluster layout param-
eters N, Z, P, (cn)n∈N, ρN, ρZ, that we defined in the introduction,
together with the former assignment α′ (if any). The computation of the
new optimal assignment α∗ is done in three successive steps that will be
detailed in the following sections. The first step computes the largest par-
tition size s∗ that an assignment can achieve. The second step computes
an optimal candidate assignment α that achieves s∗ and a heuristic is used
in the computation to make it hopefully close to α′. The third steps modi-
fies α iteratively to reduces d(α, α′) and yields an assignment α∗ achieving
s∗, and minimizing d(·, α′) among such assignments.

We will explain in the next section how to represent an assignment α
by a flow f on a weighted graph G to enable the use of flow and graph
algorithms. The main function of the algorithm can be written as follows.

Algorithm
1: function Compute Layout(N, Z, P, (cn)n∈N, ρN, ρZ, α′)
2: s∗ ← Compute Partition Size(N, Z, P, (cn)n∈N, ρN, ρZ)
3: G← G(s∗)
4: f ← Compute Candidate Assignment(G, α′)
5: f∗ ← Minimize transfer load(G, f , α′)
6: Build α∗ from f∗

7: return α∗

8: end function

Complexity As we will see in the next sections, the worst case com-
plexity of this algorithm is O(P 2N2). The minimization of transfer load
is the most expensive step, and it can run with a timeout since it is only an
optimization step. Without this step (or with a smart timeout), the worst
case complexity can be O((PN)3/2 logC) where C is the total storage
capacity of the cluster.

2.1 Determination of the partition size s∗

We will represent an assignment α as a flow in a specific graph G. Remark
that such flow must have value ρNP . We will not compute the optimal
partition size s∗ a priori, but we will determine it by dichotomy, as the
largest size s such that the maximal flow achievable on G = G(s) has value

4

ρNP . We will assume that the capacities are given in a small enough unit
(e.g. megabytes), and we will determine s∗ at the precision of the given
unit.

Given some candidate size value s, we describe the oriented weighted
graph G = (V,E) with vertex set V and arc set E (see Figure 1).

The set of vertices V contains the source s, the sink t, vertices p+,p−

for every partition p, vertices xp,z for every partition p and zone z, and
vertices n for every node n.

The set of arcs E contains:

• (s,p+, ρZ) for every partition p;

• (s,p−, ρN − ρZ) for every partition p;

• (p+,xp,z, 1) for every partition p and zone z;

• (p−,xp,z, ρN − ρZ) for every partition p and zone z;

• (xp,z,n, 1) for every partition p, zone z and node n ∈ z;

• (n, t, bcn/sc) for every node n.

In the following complexity calculations, we will use the number of
vertices and edges of G. Remark for now that #V = O(PZ) and #E =
O(PN).

Proposition 1. An assignment α is realizable with partition size s and
replication and scattering factors (ρN, ρZ) if and only if there exists a
maximal flow function f in G with total flow ρNP , such that the arcs
(xp,z,n, 1) used are exactly those for which p is associated to n in α.

Proof. Given such flow f , we can reconstruct a candidate α. In f , the
flow passing through p+ and p− is ρN, and since the outgoing capacity
of every xp,z is 1, every partition is associated to ρN distinct nodes. The
fraction ρZ of the flow passing through every p+ must be spread over as
many distinct zones as every arc outgoing from p+ has capacity 1. So
the reconstructed α verifies the replication and scattering constraints. For
every node n, the flow between n and t corresponds to the number of
partitions associated to n. By construction of f , this does not exceed
bcn/sc. We assumed that the partition size is s, hence this association
does not exceed the storage capacity of the nodes.

5

Figure 1: An example of graph G(s). Arcs are oriented from left to right,
and unlabeled arcs have capacity 1. In this example, nodes n1, n2, n3
belong to zone z1, and nodes n4, n5 belong to zone z2.

In the other direction, given an assignment α, one can similarly check
that the facts that α respects the replication and scattering constraints,
and the storage capacities of the nodes, are necessary condition to con-
struct a maximal flow function f .

Implementation remark. In the flow algorithm, while exploring the
graph, we explore the neighbours of every vertex in a random order to
heuristically spread the associations between nodes and partitions.

Algorithm With this result mind, we can describe the first step of our
algorithm. All divisions are supposed to be integer divisions.
1: function Compute Partition Size(N, Z, P, (cn)n∈N, ρN, ρZ)
2: Build the graph G = G(s = 1)
3: f ← Maximal flow(G)
4: if f.totalflow < ρNP then
5: return Error: capacities too small or constraints too strong.
6: end if
7: s− ← 1
8: s+ ← 1 + 1

ρN

∑
n∈N cn

9: while s− + 1 < s+ do

6

10: Build the graph G = G(s = (s− + s+)/2)
11: f ← Maximal flow(G)
12: if f.totalflow < ρNP then
13: s+ ← (s− + s+)/2
14: else
15: s− ← (s− + s+)/2
16: end if
17: end while
18: return s−

19: end function

Complexity To compute the maximal flow, we use Dinic’s algorithm
[2]. Its complexity on general graphs is O(#V 2#E), but on graphs with
edge capacity bounded by a constant, it turns out to be O(#E3/2). The
graph G does not fall in this case since the capacities of the arcs incoming
to t are far from bounded. However, the proof of this complexity function
works readily for graphs where we only ask the edges not incoming to the
sink t to have their capacities bounded by a constant. One can find the
proof of this claim in [3, Section 2]. The dichotomy adds a logarithmic
factor log(C) where C =

∑
n∈N cn is the total capacity of the cluster.

The total complexity of this first function is hence O(#E3/2 logC) =
O
(
(PN)3/2 logC

)
.

Metrics We can display the discrepancy between the computed s∗ and
the best size we could have hoped for the given total capacity, that is
C/ρN.

2.2 Computation of a candidate assignment

Now that we have the optimal partition size s∗, to compute a candidate
assignment it would be enough to compute a maximal flow function f on
G(s∗). This is what we do if there is no former assignment α′.

If there is some α′, we add a step that will heuristically help to obtain
a candidate α closer to α′. We fist compute a flow function f̃ that uses
only the partition-to-node associations appearing in α′. Most likely, f̃ will
not be a maximal flow of G(s∗). In Dinic’s algorithm, we can start from
a non maximal flow function and then discover improving paths. This is
what we do by starting from f̃ . The hope3 is that the final flow function

3This is only a hope, because one can find examples where the construction of f

7

f will tend to keep the associations appearing in f̃ .

More formally, we construct the graph G|α′ from G by removing all
the arcs (xp,z,n, 1) where p is not associated to n in α′. We compute a
maximal flow function f̃ in G|α′ . The flow f̃ is also a valid (most likely
non maximal) flow function on G. We compute a maximal flow function
f on G by starting Dinic’s algorithm with f̃ .

Algorithm
1: function Compute Candidate Assignment(G, α′)
2: Build the graph G|α′
3: f̃ ← Maximal flow(G|α′)
4: f ← Maximal flow from flow(G, f̃)
5: return f
6: end function

Remark The function “Maximal flow” can be just seen as the function
“Maximal flow from flow” called with the zero flow function as starting
flow.

Complexity With the considerations of the last section, we have the
complexity of Dinic’s algorithm O(#E3/2) = O((PN)3/2).

Metrics We can display the flow value of f̃ , which is an upper bound
of the distance between α and α′, although this information might not be
very relevant to end users.

2.3 Minimization of the transfer load

Now that we have a candidate flow function f , we want to modify it to
make its corresponding assignment α as close as possible to α′. Denote
by f ′ the maximal flow corresponding to α′, and let d(f, α′) = d(f, f ′) :=
d(α, α′)4. We want to build a sequence f = f0, f1, f2 . . . of maximal flows
such that d(fi, α

′) decreases as i increases. The distance being a non-
negative integer, this sequence of flow functions must be finite. We now
explain how to find some improving fi+1 from fi.

from f̃ produces an assignment α that is not as close as possible to α′.
4It is the number of arcs of type (xp,z ,n) saturated in one flow and not in the other.

8

For any maximal flow f in G, we define the oriented weighted graph
Gf = (V,Ef) as follows. The vertices of Gf are the same as the vertices of
G. Ef contains the arc (v1, v2, w) between vertices v1, v2 ∈ V with weight
w if and only if the arc (v1, v2) is not saturated in f (i.e. c(v1, v2) −
f(v1, v2) ≥ 1, we also consider reversed arcs). The weight w is:

• −1 if (v1, v2) is of type (xp,z,n) or (n,xp,z) and is saturated in only
one of the two flows f, f ′;

• +1 if (v1, v2) is of type (xp,z,n) or (n,xp,z) and is saturated in either
both or none of the two flows f, f ′;

• 0 otherwise.

If γ is a simple cycle of arcs in Gf , we define its weight w(γ) as the
sum of the weights of its arcs. We can add +1 to the value of f on the
arcs of γ, and by construction of Gf and the fact that γ is a cycle, the
function that we get is still a valid flow function on G, it is maximal as it
has the same flow value as f . We denote this new function f + γ.

Proposition 2. Given a maximal flow f and a simple cycle γ in Gf , we
have d(f + γ, f ′)− d(f, f ′) = w(γ).

Proof. Let X be the set of arcs of type (xp,z,n). Then we can express
d(f, f ′) as

d(f, f ′) = #{e ∈ X | f(e) 6= f ′(e)} =
∑
e∈X

1f(e)6=f ′(e)

=
1

2

(
#X +

∑
e∈X

1f(e)6=f ′(e) − 1f(e)=f ′(e)
)
.

We can express the cycle weight as

w(γ) =
∑

e∈X,e∈γ
−1f(e)6=f ′(e) + 1f(e)=f ′(e).

Remark that since we passed one unit of flow in γ to construct f + γ, we
have for any e ∈ X, f(e) = f ′(e) if and only if (f + γ)(e) 6= f ′(e). Hence

w(γ) =
1

2
(w(γ) + w(γ))

=
1

2

(∑
e∈X,e∈γ

−1f(e)6=f ′(e) + 1f(e)=f ′(e)

+
∑

e∈X,e∈γ
1(f+γ)(e) 6=f ′(e) + 1(f+γ)(e)=f ′(e)

)
.

9

Plugging this in the previous equation, we find that

d(f, f ′) + w(γ) = d(f + γ, f ′).

This result suggests that given some flow fi, we just need to find a neg-
ative cycle γ in Gfi to construct fi+1 as fi + γ. The following proposition
ensures that this greedy strategy reaches an optimal flow.

Proposition 3. For any maximal flow f , Gf contains a negative cycle
if and only if there exists a maximal flow f∗ in G such that d(f∗, f ′) <
d(f, f ′).

Proof. Suppose that there is such flow f∗. Define the oriented multigraph
Mf,f∗ = (V,EM) with the same vertex set V as in G, and for every
v1, v2 ∈ V , EM contains (f∗(v1, v2)−f(v1, v2))+ copies of the arc (v1, v2).
For every vertex v, its total degree (meaning its outer degree minus its
inner degree) is equal to

deg v =
∑
u∈V

(f∗(v, u)− f(v, u))+ −
∑
u∈V

(f∗(u, v)− f(u, v))+

=
∑
u∈V

f∗(v, u)− f(v, u) =
∑
u∈V

f∗(v, u)−
∑
u∈V

f(v, u).

The last two sums are zero for any inner vertex since f, f∗ are flows, and
they are equal on the source and sink since the two flows are both maximal
and have hence the same value. Thus, deg v = 0 for every vertex v.

This implies that the multigraph Mf,f∗ is the union of disjoint simple
cycles. f can be transformed into f∗ by pushing a mass 1 along all these
cycles in any order. Since d(f∗, f ′) < d(f, f ′), there must exists one of
these simple cycles γ with d(f + γ, f ′) < d(f, f ′). Finally, since we can
push a mass in f along γ, it must appear in Gf . Hence γ is a cycle of Gf
with negative weight.

In the next section we describe the corresponding algorithm. Instead
of discovering only one cycle per iteration, we are allowed to discover a
set Γ of disjoint negative cycles.

Algorithm
1: function Minimize transfer load(G, f , α′)

10

2: Build the graph Gf
3: Γ← Detect Negative Cycles(Gf)
4: while Γ 6= ∅ do
5: for all γ ∈ Γ do
6: f ← f + γ
7: end for
8: Update Gf
9: Γ← Detect Negative Cycles(Gf)

10: end while
11: return f
12: end function

Complexity The distance d(f, f ′) is bounded by the maximal number
of differences in the associated assignment. If these assignment are totally
disjoint, this distance is 2ρNP . At every iteration of the While loop, the
distance decreases, so there is at most O(ρNP) = O(P) iterations.

The detection of negative cycles is done with the Bellman-Ford algo-
rithm, whose complexity should normally be O(#E#V). In our case, it
amounts to O(P 2ZN). Multiplied by the complexity of the outer loop,
it amounts to O(P 3ZN) which is a lot when the number of partitions
and nodes starts to be large. To avoid that, we adapt the Bellman-Ford
algorithm.

The Bellman-Ford algorithm runs #V iterations of an outer loop, and
an inner loop over E. The idea is to compute the shortest paths from a
source vertex v to all other vertices. After k iterations of the outer loop,
the algorithm has computed all shortest path of length at most k. All
simple paths have length at most #V − 1, so if there is an update in the
last iteration of the loop, it means that there is a negative cycle in the
graph. The observation that will enable us to improve the complexity is
the following:

Proposition 4. In the graph Gf (and G), all simple paths have a length
at most 4N .

Proof. Since f is a maximal flow, there is no outgoing edge from s in Gf .
One can thus check than any simple path of length 4 must contain at
least two node of type n. Hence on a path, at most 4 arcs separate two
successive nodes of type n.

Thus, in the absence of negative cycles, shortest paths in Gf have

11

length at most 4N . So we can do only 4N + 1 iterations of the outer
loop in the Bellman-Ford algorithm. This makes the complexity of the
detection of one set of cycle to be O(N#E) = O(N2P).

With this improvement, the complexity of the whole algorithm is, in
the worst case, O(N2P 2). However, since we detect several cycles at once
and we start with a flow that might be close to the previous one, the
number of iterations of the outer loop might be smaller in practice.

Metrics We can display the node and zone utilization ratio, by dividing
the flow passing through them divided by their outgoing capacity. In
particular, we can pinpoint saturated nodes and zones (i.e. used at their
full potential).

We can display the distance to the previous assignment, and the num-
ber of partition transfers.

3 Related work

In previous versions of Garage, we iterated through many algorithms to
build an assignment of partitions to nodes, always with unsatisfactory
results. These previous attempts, all based on existing work, are described
in this section.

Basic consistent hashing with zone awareness In this algorithm,
we use the simple consistent hashing ring described in Dynamo [4]. We
slightly adapt it to support nodes in different zones and the requirement to
spread replicas over as many zones as possible: when looking up the nodes
associated to a data block, we walk the ring starting from the position
corresponding to its hash, but we skip nodes that are in a zone from which
we have already selected a node (except if there are no more distinct zones
to take nodes from). This method had the disadvantage of giving a very
unbalanced distribution of data between nodes. For example, suppose
that there are many consecutive nodes on the ring that are in zones 1 and
2, followed by one node in zone 3. Then that node will store a copy of all
data blocks whose hashes are in the interval before it that contains only
nodes of zone 1 and 2.

12

Arbitrary ring positions vs. fixed partition boundaries As al-
ready discussed in the Dynamo paper [4] (see the three different strategies
presented in Figure 7), using the hashes of node identifiers as positions
on the consistent hashing ring makes the intervals between these posi-
tions of wildly varying sizes, worsening the imbalance of storage affected
to all nodes. To resolve this issue, we very rapidly switched to dividing
the consistent hashing ring into equally sized parts (what we call parti-
tions), as shown in Dynamo’s strategies 2 and 3. To ensure that all nodes
handle a number of partitions strictly proportional to their capacity, we
tried using the MagLev algorithm [5] to assign partitions to nodes. How-
ever, just doing this does not solve the zone awareness issue; continuing
to use the simple ring walking where nodes are skipped still produces a
very imbalanced distribution.

Multi-zone aware MagLev Our next try was to improve the MagLev
algorithm to be multi-zone aware. Now, instead of assigning a single node
to each ring position (each partition) and walking the ring to find three
nodes starting at a given key’s hash, we directly assign a set of three
nodes to each partition and completely abandon ring walking. The first
node of the three is computed for all partitions by using the standard
MagLev algorithm. Then, the next two are computed using a variant of
MagLev that skips assigning nodes to partitions when they are in zones
of nodes already selected for that partition (unless there are no more dis-
tinct zones available), selecting other nodes instead. This way, we ensure
that the three nodes assigned to each partition are in as many distinct
zones as possible. This method provided perfectly equitable distribution
of data among nodes, however when layout changes occurred, the entire
assignment was recomputed without taking into account the previous one,
and thus there was no way to ensure that a minimal amount of data was
displaced from one node to another.

Stateful assignment algorithms In all of the previous iterations, we
were limiting ourselves to algorithms that were stateless: the assignment
had to be computed in a deterministic way from only the list of node
identifiers and their zone and capacity information, using hash functions
to provide pseudo-randomness. To be able to minimize the transfer load
on layout changes, we had to switch to a stateful method where the entire
assignment is computed offline and then propagated to all cluster nodes.
It can now be computed using any arbitrary optimization algorithm that
can take as an input the previous assignment to minimize transfer load.

13

This method was introduced in Garage version 0.5 with a simple greedy
optimization algorithm that was not optimal, which was in use until ver-
sion 0.8. The final, optimal assignment algorithm is the one we presented
in this paper, which will be included in Garage version 0.9 and forward.

Acknowledgements

This project has received funding from the European Union’s Horizon
2021 research and innovation programme within the framework of the
NGI-POINTER Project funded under grant agreement N° 871528.

References

[1] M. Raynal, Building Read/Write Registers Despite Asynchrony and
Less than Half of Processes Crash (t < n/2), pp. 95–117. Cham:
Springer International Publishing, 2018.

[2] Y. Dinitz, “Algorithm for solution of a problem of maximum flow
in networks with power estimation,” Soviet Math. Dokl., vol. 11,
pp. 1277–1280, 01 1970.

[3] S. Even and R. E. Tarjan, “Network flow and testing graph connectiv-
ity,” SIAM journal on computing, vol. 4, no. 4, pp. 507–518, 1975.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[5] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer,” in 13th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 16), pp. 523–535, 2016.

14

	1 Introduction
	1.1 Notations
	1.2 Optimization objectives

	2 Computation of an optimal assignment
	2.1 Determination of the partition size s*
	2.2 Computation of a candidate assignment
	2.3 Minimization of the transfer load

	3 Related work

