ConvNets and Forward Modeling for StarCraft AI

Alex Auvolat

September 15, 2016

ConvNets and Forward Modeling for StarCraft AI

æ

< □ > < □ > < □ > < □ > < □ > < □

æ

*ロ * * @ * * 注 * * 注 *

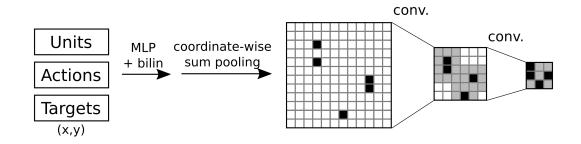
Section 1

ConvNets for StarCraft

ConvNets and Forward Modeling for StarCraft AI

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()~.

A common architecture for forward modeling and RL


The idea:

- Network input = 2D "image" of game state
- 1 ConvNet pixel = 1 game walktile

Why ConvNets:

- Natural representation
- Implicit encoding of relative positions
- Possibility of handling collisions
- Possibility of handling complex actions with area of effect (e.g. Psi Storm)

æ

Example

Two ally units at (4,3) and (10,7) attacking a single enemy unit at (4,5)

(x, y)	Туре	Meaning
(4,3)	Unit	Ally Terran Marine present here, 40 HP
(4,3)	Action	Ally Terran Marine here attacking at $(+0, +2)$, 0 cooldown
(10, 7)	Unit	Ally Terran Marine present here, 12 HP
(10, 7)	Action	Ally Terran Marine here attacking at $(-6, -2)$, 5 frames cooldown
(4, 5)	Unit	Enemy Terran Marine present here, 25 HP
(4, 5)	Target	Ally Terran Marine attacking here from $(+0, -2)$, 0 cooldown
(4,5)	Target	Ally Terran Marine attacking here from $(+6, +2)$, 5 frames cooldown

Table: Feature vectors for a simple example state

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Section 2

Forward Modeling

ConvNets and Forward Modeling for StarCraft AI

7 / 20

æ

Real Game Example

[VIDEO]

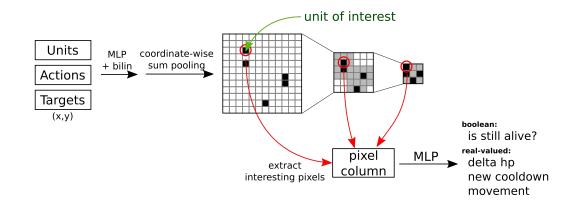
ConvNets and Forward Modeling for StarCraft AI

æ

< ロ > < 部 > < 注 > < 注 >

StarCraft ConvNet for Forward Modeling

Method:


- \blacksquare Extract pixel of a unit \rightarrow MLP \rightarrow predict unit's next state
- Use human player data as training set
- Predict game state at t + 8 frames

Possible Uses:

- Tree search
- Share parameters with RL model, learn better features for transfer learning
- Instead of evaluating Q(s, a), calculate estimation of state s' and evaluate V(s')
- Model-based RL

Network structure

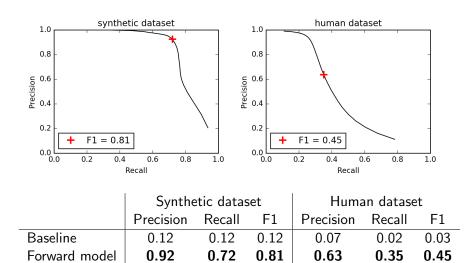
æ

Experiment details

Data set: 7000 pro human games (176 789 battles, > 100 frames each)

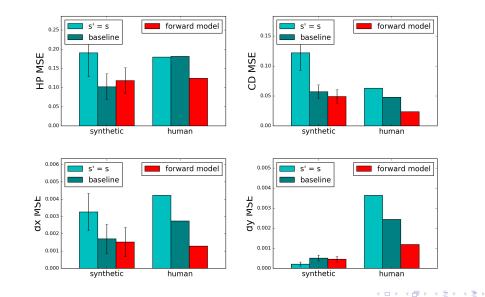
- Train set = 172591 battles
- Test set = 2153 battles (from different games)
- 110 unit types, 180 action types

Evaluation:


- Synthetic dataset, same small scenarios as in RL task
- Human dataset

Baseline:

- Hand-crafted approximation of the game dynamics: dealing with attacks and movements, rules for velocity and acceleration.
- Lacks many corner cases. No handling of collisions, ...


Results: precision/recall on dead unit prediction

Results: mean square errors

æ

Results:

- Forward model works much better than hand-crafted heuristic
- Particularly clear on dead/alive prediction

Conclusion:

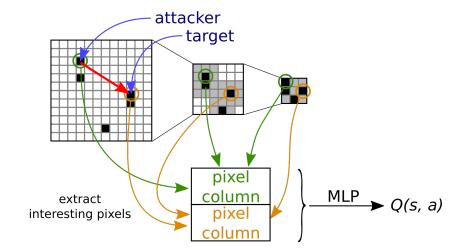
- StarCraft dynamics are complex, difficult to approximate with a small set of rules
- \blacksquare \rightarrow Need a model that can learn from examples!
- Still room for model improvements (e.g. buildings)

Section 3

Reinforcement Learning with ConvNets

ConvNets and Forward Modeling for StarCraft AI

15 / 20


æ

Network structure

æ

Where we're at

What is coded:

- RL model from scratch
- RL model with transfer learning (taking parameters from the forward model)
- Parameter freeze vs. parameter fine-tuning

Preliminary results:

- Transfer learning might help on m5v5, still running
- Pre-training has not yet enabled us to train a ConvNet model on bigger maps such as m15v16

Conclusion

Status:

- The forward model on its own beats a reasonably good baseline, showing that learning is useful
- RL experiments in progress

Other ideas:

- Tree search
- Imitation learning
- Structure learning

Questions?

æ